Patterned Erasure Correcting Codes for Low Storage-Overhead Blockchain Systems

> Debarnab Mitra, Lara Dolecek Loris Lab, ECE Department, UCLA

> > November 6th 2019

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example Analysis

Efficiently Scalable Design

Simulation Results

Conclusion

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example

Efficiently Scalable Desig

Simulation Results

Conclusion

Blockchain Ledger

- \blacktriangleright N blocks B_1, B_2, \ldots, B_N .
- Stored in the form of a hash chain Tamper proof

▶ P2P Network of *n* nodes

Figure: P2P Network

- P2P Network of *n* nodes
- Each node stores full ledger
- Decentralized

Figure: P2P Network

- P2P Network of *n* nodes
- Each node stores full ledger
- Decentralized
- Can correct up to (n-1)node failures

Figure: P2P Network

P2P Network of *n* nodes

- Each node stores full ledger
- Decentralized
- \blacktriangleright Can correct up to (n-1)node failures

Significant storage cost

Figure: P2P Network

- P2P Network of *n* nodes
- Each node stores full ledger
- Decentralized
- \blacktriangleright Can correct up to (n-1)node failures

Significant storage cost

Figure: P2P Network

Goal: Reduce storage costs without reducing blockchain availability

Blockchain of size *B* partitioned into *k* shards s_1, s_2, \ldots, s_k

▶ *n* coded shards $\tilde{s}_1, \tilde{s}_2, \ldots, \tilde{s}_n$ generated using (n, k) MDS code

¹M. Dai, S. Zhag, H. Wang, and S. Jin, "A low storage room requirement framework for distributed ledger in blockchain," *IEEE Access*, Mar. 2018.

²D. Perard, J. Lacan, Y. Bachy, and J. Detchart, "Erasure code-based low storage blockchain node," *arXiv:1805.00860*, May 2018.

- Blockchain of size B partitioned into k shards s₁, s₂, ..., s_k
- ▶ *n* coded shards $\tilde{s}_1, \tilde{s}_2, \ldots, \tilde{s}_n$ generated using (n, k) MDS code
- Each node N_i stores one coded shard

¹M. Dai, S. Zhag, H. Wang, and S. Jin, "A low storage room requirement framework for distributed ledger in blockchain," *IEEE Access*, Mar. 2018.

²D. Perard, J. Lacan, Y. Bachy, and J. Detchart, "Erasure code-based low storage blockchain node," *arXiv:1805.00860*, May 2018.

- Blockchain of size B partitioned into k shards s₁, s₂, ..., s_k
- ▶ *n* coded shards $\tilde{s}_1, \tilde{s}_2, \ldots, \tilde{s}_n$ generated using (n, k) MDS code
- Each node N_i stores one coded shard
- Storage at each Node: $\frac{B}{k}$,

¹M. Dai, S. Zhag, H. Wang, and S. Jin, "A low storage room requirement framework for distributed ledger in blockchain," *IEEE Access*, Mar. 2018.

²D. Perard, J. Lacan, Y. Bachy, and J. Detchart, "Erasure code-based low storage blockchain node," *arXiv:1805.00860*, May 2018.

- Blockchain of size B partitioned into k shards s₁, s₂, ..., s_k
- ▶ *n* coded shards $\tilde{s}_1, \tilde{s}_2, \ldots, \tilde{s}_n$ generated using (n, k) MDS code
- Each node N_i stores one coded shard
- Storage at each Node: $\frac{B}{k}$,

¹M. Dai, S. Zhag, H. Wang, and S. Jin, "A low storage room requirement framework for distributed ledger in blockchain," *IEEE Access*, Mar. 2018.

²D. Perard, J. Lacan, Y. Bachy, and J. Detchart, "Erasure code-based low storage blockchain node," *arXiv:1805.00860*, May 2018.

- Blockchain of size B partitioned into k shards s₁, s₂, ..., s_k
- ▶ *n* coded shards $\tilde{s}_1, \tilde{s}_2, \ldots, \tilde{s}_n$ generated using (n, k) MDS code
- Each node N_i stores one coded shard
- Storage at each Node: $\frac{B}{k}$, corrects all (n k) node failures

¹M. Dai, S. Zhag, H. Wang, and S. Jin, "A low storage room requirement framework for distributed ledger in blockchain," *IEEE Access*, Mar. 2018.

²D. Perard, J. Lacan, Y. Bachy, and J. Detchart, "Erasure code-based low storage blockchain node," *arXiv:1805.00860*, May 2018.

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example Analysis

Efficiently Scalable Design

Simulation Results

Conclusion

- In practice, nodes fail periodically³
- Different nodes with different periodicities
 - \implies only specific patterns of erasures possible

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities

 \implies only specific patterns of erasures possible

Node 1:

Node 2:

Node 3:

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities

 \implies only specific patterns of erasures possible

```
Node 1: \checkmark \checkmark \checkmark \checkmark
Node 2:
Node 3:
```

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities

 \implies only specific patterns of erasures possible

```
Node 1: \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Node 2:
Node 3:
```

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities

 \implies only specific patterns of erasures possible

Node 1: $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$ Node 2: Node 3: Periodicity modelled by

uptime, downtime (u,d)

▶ phase *p* ∈ [0, *u*]

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities

 \implies only specific patterns of erasures possible

Node 1: $\sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}}$ Periodicity modelled byNode 2: \downarrow uptime, downtime (u,d)Node 3: \downarrow phase $p \in [0, u]$

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities

 \implies only specific patterns of erasures possible

Node 1: $\checkmark \checkmark \checkmark$ Periodicity modelled byNode 2: $\checkmark \checkmark \checkmark$ \checkmark uptime, downtime (u,d)Node 3: \triangleright phase $p \in [0, u]$

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³

Node 1: $\checkmark \checkmark \checkmark$ Periodicity modelled byNode 2: $\checkmark \checkmark \checkmark$ • uptime, downtime (u,d)Node 3:• phase $p \in [0, u]$

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities
 ⇒ only specific patterns of erasures possible

Node 1: $\sqrt[4]{}}\sqrt[4]{}\sqrt[4]{}\sqrt[4]{}}$

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities
 ⇒ only specific patterns of erasures possible

Node 1: $\sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}}$ Periodicity modelled by Node 2: $\sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}}$ \downarrow uptime, downtime (*u*,*d*) Node 3: $\times \times \sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}$ \downarrow phase $p \in [0, u]$

• Patterned Erasure Set $\mathcal{P} = \{\{N_1\}, \{N_2\}, \{N_3\}, \{N_1, N_2\}, \{N_1, N_3\}\}$

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

- In practice, nodes fail periodically³
- Different nodes with different periodicities
 ⇒ only specific patterns of erasures possible

Node 1: $\sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}}$ Periodicity modelled by Node 2: $\sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}}$ \downarrow uptime, downtime (*u*,*d*) Node 3: $\times \times \sqrt[4]{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}\sqrt{}$ \downarrow phase $p \in [0, u]$

- ▶ Patterned Erasure Set $\mathcal{P} = \{\{N_1\}, \{N_2\}, \{N_3\}, \{N_1, N_2\}, \{N_1, N_3\}\}$
- Can reduce storage per node by designing codes which correct only these erasure patterns

³S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, "Storj: A peer to peer storage network,", Dec. 2014.

For a blockchain of size B with n nodes {N₁, N₂,..., N_n} and erasure patterned set P = {P₁, P₂,..., P_{|P|}}, design a code which guarantees to corrects all erasure patterns in P and has minimum average storage per node

For a blockchain of size B with n nodes {N₁, N₂,..., N_n} and erasure patterned set P = {P₁, P₂,..., P_{|P|}}, design a code which guarantees to corrects all erasure patterns in P and has minimum average storage per node

Lemma

Using Coded Sharding to correct all erasure patterns in \mathcal{P} , storage per node $\geq \frac{B}{n-t}$, where $t = \max|P_j|$.

For a blockchain of size B with n nodes {N₁, N₂,..., N_n} and erasure patterned set P = {P₁, P₂,..., P_{|P|}}, design a code which guarantees to corrects all erasure patterns in P and has minimum average storage per node

Lemma

Using Coded Sharding to correct all erasure patterns in \mathcal{P} , storage per node $\geq \frac{B}{n-t}$, where $t = \max|P_j|$.

Good enough to use an (n, k) MDS code which corrects all t erasure patterns

For a blockchain of size B with n nodes {N₁, N₂,..., N_n} and erasure patterned set P = {P₁, P₂,..., P_{|P|}}, design a code which guarantees to corrects all erasure patterns in P and has minimum average storage per node

Lemma

Using Coded Sharding to correct all erasure patterns in \mathcal{P} , storage per node $\geq \frac{B}{n-t}$, where $t = \max|P_j|$.

Good enough to use an (n, k) MDS code which corrects all t erasure patterns

Observation:

► In Coded Sharding, each node stores the same no. of shards

For a blockchain of size B with n nodes {N₁, N₂,..., N_n} and erasure patterned set P = {P₁, P₂,..., P_{|P|}}, design a code which guarantees to corrects all erasure patterns in P and has minimum average storage per node

Lemma

Using Coded Sharding to correct all erasure patterns in \mathcal{P} , storage per node $\geq \frac{B}{n-t}$, where $t = \max|P_j|$.

Good enough to use an (n, k) MDS code which corrects all t erasure patterns

Observation:

► In Coded Sharding, each node stores the same no. of shards

We can get a better average storage per node by relaxing this condition

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example Analysis

Efficiently Scalable Design Simulation Results Conclusion

• Let the blockchain be partitioned into k shards s_1, s_2, \ldots, s_k

- Let the blockchain be partitioned into k shards s_1, s_2, \ldots, s_k
- Let x_i coded shards be storage at Node N_i

- Let the blockchain be partitioned into k shards s_1, s_2, \ldots, s_k
- Let x_i coded shards be storage at Node N_i

Average storage per node: $\frac{B}{n} \frac{\sum_{i=1}^{n} x_i}{k}$

- Let the blockchain be partitioned into k shards s₁, s₂,..., s_k
- Let x_i coded shards be storage at Node N_i

Average storage per node: $\frac{B}{n} \frac{\sum_{i=1}^{n} x_i}{k}$

• Depends on k and the total number of shards stored, $\sum_{i=1}^{n} x_i$
- Let the blockchain be partitioned into k shards s₁, s₂,..., s_k
- Let x_i coded shards be storage at Node N_i

Average storage per node: $\frac{B}{n} \frac{\sum_{i=1}^{n} x_i}{k}$

- Depends on k and the total number of shards stored, $\sum_{i=1}^{n} x_i$
- To minimize average storage, k and x = (x₁, x₂,..., x_n) should be jointly optimized

- Let the blockchain be partitioned into k shards s₁, s₂,..., s_k
- Let x_i coded shards be storage at Node N_i

Average storage per node: $\frac{B}{n} \frac{\sum_{i=1}^{n} x_i}{k}$

- Depends on k and the total number of shards stored, $\sum_{i=1}^{n} x_i$
- To minimize average storage, k and x = (x₁, x₂,..., x_n) should be jointly optimized
- Condition for Blockchain recoverability:
- For each patterned erasure set, the number of coded shards in its complement should be at least k

- Considering k and x_i's as variables
- Code construction involves solving the following: (where P
 _j denotes the set of nodes not in P_j)

- Considering k and x_i's as variables
- Code construction involves solving the following: (where P
 _j denotes the set of nodes not in P_j)

Integer Optimization

$$\begin{array}{c} \underset{x_{1},\ldots,x_{n},k}{\min} \quad \frac{B}{n} \frac{\sum_{i=1}^{n} x_{i}}{k} \\
s.t \sum_{i:N_{i} \in \bar{P}_{j}} x_{i} \geq k, j = 1, 2, \ldots, |\mathcal{P}| \\
x_{i} \in \mathbf{Z}^{+}, i = 1, 2, \ldots, n \\
k \in \mathbf{Z}^{++}
\end{array}$$

- Considering k and x_i's as variables
- Code construction involves solving the following: (where P
 _j denotes the set of nodes not in P_j)

Integer Optimization

$$\begin{array}{c} \underset{x_{1},\ldots,x_{n},k}{\min} \quad \frac{B}{n} \frac{\sum_{i=1}^{n} x_{i}}{k} \\
s.t \sum_{i:N_{i} \in \bar{P}_{j}} x_{i} \geq k, j = 1, 2, \ldots, |\mathcal{P}| \\
x_{i} \in \mathbb{Z}^{+}, i = 1, 2, \ldots, n \\
k \in \mathbb{Z}^{++}
\end{array}$$

• Optimal solution (\mathbf{x}^*, k^*) .

PARE (Pattern Aware Redundancy for Erasures)- Code :

• m^{th} coded shard at N_i : $\alpha_{i,m}^1 s_1 + \alpha_{i,m}^2 s_2 + \ldots + \alpha_{i,m}^{k^*} s_{k^*}$, $1 \le m \le x_i^*$

PARE (Pattern Aware Redundancy for Erasures)- Code :

- m^{th} coded shard at N_i : $\alpha_{i,m}^1 s_1 + \alpha_{i,m}^2 s_2 + \ldots + \alpha_{i,m}^{k^*} s_{k^*}$, $1 \le m \le x_i^*$ $\alpha_{i,m}^{\nu}$ chosen st. for each patterned set P_j , and $\{i : N_i \in \overline{P}_j\}$, the
- following matrix has rank k^*

PARE (Pattern Aware Redundancy for Erasures)- Code :

- m^{th} coded shard at N_i : $\alpha_{i,m}^1 s_1 + \alpha_{i,m}^2 s_2 + \ldots + \alpha_{i,m}^{k^*} s_{k^*}$, $1 \le m \le x_i^*$
- $\alpha_{i,m}^{\nu}$ chosen st. for each patterned set P_j , and $\{i : N_i \in \overline{P}_j\}$, the following matrix has rank k^*

Can always choose a sufficiently large field to get required $\alpha^{\nu}_{i,m}$

PARE (Pattern Aware Redundancy for Erasures)- Code :

- m^{th} coded shard at N_i : $\alpha_{i,m}^1 s_1 + \alpha_{i,m}^2 s_2 + \ldots + \alpha_{i,m}^{k^*} s_{k^*}$, $1 \le m \le x_i^*$
- $\alpha_{i,m}^{\nu}$ chosen st. for each patterned set P_j , and $\{i : N_i \in \overline{P}_j\}$, the following matrix has rank k^*

Can always choose a sufficiently large field to get required α^ν_{i,m}
 E.g. can choose α^ν_{i,m} to form Vandermonde type matrices

Equivalence with Linear Programming

Equivalence with Linear Programming

Linear Program

$$\min_{y_1,\dots,y_n} \sum_{i=1}^n y_i$$
s.t $\sum_{i:N_i \in \bar{P}_j} y_i \ge 1, j = 1, 2, \dots, |\mathcal{P}|$
 $y_i \ge 0, i = 1, 2, \dots, n$

Equivalence with Linear Programming

Integer Optimization

$$\begin{array}{c} \underset{x_{1},\ldots,x_{n},k}{\min} \quad \frac{B}{n} \frac{\sum_{i=1}^{n} x_{i}}{k} \\
s.t \sum_{i:N_{i} \in \bar{P}_{j}} x_{i} \geq k, j = 1, 2, \ldots, |\mathcal{P}| \\
x_{i} \in \mathbb{Z}^{+}, i = 1, 2, \ldots, n; \ k \in \mathbb{Z}^{++} \end{array} = \begin{bmatrix}
\begin{array}{c} \underset{y_{1},\ldots,y_{n}}{\min} \sum_{i=1}^{n} y_{i} \\
s.t \sum_{i:N_{i} \in \bar{P}_{j}} y_{i} \geq 1, j = 1, 2, \ldots, |\mathcal{P}| \\
y_{i} \geq 0, i = 1, 2, \ldots, n
\end{array}$$

Equivalence:

If y* = (y1*, y2*, ..., yn*) is an optimal solution of the LP, then choose k* st. k* × y* = (k*y1*, k*y2*, ..., k*yn*) is integral and x* = k* × y*
 (x*, k*) is optimal for Integer Optimization problem

• 6 Nodes: $\{N_1, N_2, N_3, N_4, N_5, N_6\}$

$$\mathcal{P} = \begin{cases} \{N_1, N_3, N_4, N_5\} \\ \{N_1, N_3, N_6\} \\ \{N_2, N_3, N_5, N_6\} \\ \{N_1, N_2, N_4\} \\ \{N_4, N_6\} \end{cases}$$

• 6 Nodes: $\{N_1, N_2, N_3, N_4, N_5, N_6\}$

▶
$$\mathbf{y}^* = (\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4})$$

•
$$k^* = 4$$
 and $\mathbf{x}^* = (2, 1, 0, 2, 1, 3)$

$$\mathcal{P} = \begin{cases} \{N_1, N_3, N_4, N_5\} \\ \{N_1, N_3, N_6\} \\ \{N_2, N_3, N_5, N_6\} \\ \{N_1, N_2, N_4\} \\ \{N_4, N_6\} \end{cases}$$

• 6 Nodes: $\{N_1, N_2, N_3, N_4, N_5, N_6\}$

$$\mathbf{y}^* = (\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4})$$

•
$$k^* = 4$$
 and $\mathbf{x}^* = (2, 1, 0, 2, 1, 3)$

$$\mathcal{P} = \begin{cases} \{N_1, N_3, N_4, N_5\} \\ \{N_1, N_3, N_6\} \\ \{N_2, N_3, N_5, N_6\} \\ \{N_1, N_2, N_4\} \\ \{N_4, N_6\} \end{cases}$$

Example

PARE-Example

• 6 Nodes: $\{N_1, N_2, N_3, N_4, N_5, N_6\}$

►
$$\mathbf{y}^* = (\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4})$$

•
$$k^* = 4$$
 and $\mathbf{x}^* = (2, 1, 0, 2, 1, 3)$

$$\mathcal{P} = \begin{cases} \{N_1, N_3, N_4, N_5\} \\ \{N_1, N_3, N_6\} \\ \{N_2, N_3, N_5, N_6\} \\ \{N_1, N_2, N_4\} \\ \{N_4, N_6\} \end{cases}$$

• 6 Nodes: $\{N_1, N_2, N_3, N_4, N_5, N_6\}$

►
$$\mathbf{y}^* = (\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4})$$

•
$$k^* = 4$$
 and $\mathbf{x}^* = (2, 1, 0, 2, 1, 3)$

$$\mathcal{P} = \begin{cases} \{N_1, N_3, N_4, N_5\} \\ \{N_1, N_3, N_6\} \\ \{N_2, N_3, N_5, N_6\} \\ \{N_1, N_2, N_4\} \\ \{N_4, N_6\} \end{cases}$$

• 6 Nodes: $\{N_1, N_2, N_3, N_4, N_5, N_6\}$

$$\mathbf{y}^* = (\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4})$$

•
$$k^* = 4$$
 and $\mathbf{x}^* = (2, 1, 0, 2, 1, 3)$

$$\mathcal{P} = \begin{cases} \{N_1, N_3, N_4, N_5\} \\ \{N_1, N_3, N_6\} \\ \{N_2, N_3, N_5, N_6\} \\ \{N_1, N_2, N_4\} \\ \{N_4, N_6\} \end{cases}$$

Partition blockchain into 4 shards {a, b, c, d}

Average storage per node using PARE-Code: 0.375B
 Average storage per node using (6,2) MDS code: 0.5B

Analysis

Theoretical Analysis

Lemma

Average storage per node for PARE-Code is no more than $\frac{B}{n-t}$, where $t = \max |P_i|.$

Theoretical Analysis

Lemma

Average storage per node for PARE-Code is no more than $\frac{B}{n-t}$, where $t = \max|P_j|$.

Proof Idea

Coded sharding with k = n - t and $x_i = 1$ $\forall i$ is a feasible solution and achieves an objective value of $\frac{B}{n-t}$.

Theoretical Analysis

Lemma

Average storage per node for PARE-Code is no more than $\frac{B}{n-t}$, where $t = \max|P_j|$.

Proof Idea

Coded sharding with k = n - t and $x_i = 1$ $\forall i$ is a feasible solution and achieves an objective value of $\frac{B}{n-t}$.

Theorem

PARE-Code gives the minimum average storage per node of all codes that correct all erasure patterns in \mathcal{P} .

Theoretical Analysis

Lemma

Average storage per node for PARE-Code is no more than $\frac{B}{n-t}$, where $t = \max|P_j|$.

Proof Idea

Coded sharding with k = n - t and $x_i = 1$ $\forall i$ is a feasible solution and achieves an objective value of $\frac{B}{n-t}$.

Theorem

PARE-Code gives the minimum average storage per node of all codes that correct all erasure patterns in \mathcal{P} .

Proof Idea

For any coding scheme, if $B_1, B_2, ..., B_n$ are the amounts of the blockchain stored at $N_1, N_2, ..., N_n$ respectively, then B_i 's must satisfy $\sum_{i:N_i \in \bar{P}_j} B_i \ge B \implies \frac{B_i}{B}$ is feasible in the LP.

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example Analysis

Efficiently Scalable Design

Simulation Results

Conclusion

(n, k) code used in Coded Sharding depends on number of nodes n

- \blacktriangleright (*n*, *k*) code used in Coded Sharding depends on number of nodes *n*
- Consider a system with n nodes and optimal solution y^{old}

- (n, k) code used in Coded Sharding depends on number of nodes n
- Consider a system with n nodes and optimal solution y^{old}
- ► Assume uptimes U = [u₁, u₂,..., u_r] and downtimes set D = [d₁, d₂,..., d_r].

- (n, k) code used in Coded Sharding depends on number of nodes n
- Consider a system with n nodes and optimal solution y^{old}
- Assume uptimes U = [u₁, u₂,..., u_r] and downtimes set D = [d₁, d₂,..., d_r]. Each node N_i randomly picks a 1 ≤ i ≤ r and selects the (u_i, d_i) pair and a phase p_i ∈ [0, u_i].

- (n, k) code used in Coded Sharding depends on number of nodes n
- Consider a system with n nodes and optimal solution y^{old}
- Assume uptimes U = [u₁, u₂, ..., u_r] and downtimes set D = [d₁, d₂, ..., d_r]. Each node N_i randomly picks a 1 ≤ i ≤ r and selects the (u_i, d_i) pair and a phase p_i ∈ [0, u_i].

Theorem

For the (n+1) system $Prob[(\mathbf{y}^{old}, \mathbf{0}) \text{ is optimal }] \to 1 \text{ as } n \to \infty \text{ using } PARE-Code.$

- (n, k) code used in Coded Sharding depends on number of nodes n
- Consider a system with n nodes and optimal solution y^{old}
- Assume uptimes U = [u₁, u₂, ..., u_r] and downtimes set D = [d₁, d₂, ..., d_r]. Each node N_i randomly picks a 1 ≤ i ≤ r and selects the (u_i, d_i) pair and a phase p_i ∈ [0, u_i].

Theorem

For the (n+1) system $Prob[(\mathbf{y}^{old}, \mathbf{0}) \text{ is optimal }] \to 1 \text{ as } n \to \infty \text{ using } PARE-Code.$

Redesigning the coding is not needed when scaling up the number of nodes

- (n, k) code used in Coded Sharding depends on number of nodes n
- Consider a system with n nodes and optimal solution y^{old}
- Assume uptimes U = [u₁, u₂, ..., u_r] and downtimes set D = [d₁, d₂, ..., d_r]. Each node N_i randomly picks a 1 ≤ i ≤ r and selects the (u_i, d_i) pair and a phase p_i ∈ [0, u_i].

Theorem

For the (n+1) system $Prob[(\mathbf{y}^{old}, 0) \text{ is optimal }] \to 1 \text{ as } n \to \infty \text{ using } PARE-Code.$

Redesigning the coding is not needed when scaling up the number of nodes

Proof Idea

For sufficiently large n, the probability that the $(n+1)^{st}$ node has the same periodicity pattern as one of earlier nodes tends to 1.

LP for (n + 1) system:

$$\begin{split} \min_{y_1,\dots,y_{n+1}} \mathbf{1}^{\mathsf{T}} \mathbf{y} & \max - \mathbf{b}^{\mathsf{T}} \boldsymbol{\lambda} \\ s.t & \mathbf{A} \mathbf{y} \leq \mathbf{b} \quad s.t & \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda} + \mathbf{1} = \mathbf{0}, \boldsymbol{\lambda} \geq \mathbf{0}. \end{split}$$

LP for (n+1) system:

$$\begin{split} \min_{\substack{y_1,\ldots,y_{n+1}}} \mathbf{1}^T \mathbf{y} & \max - \mathbf{b}^T \boldsymbol{\lambda} \\ s.t & \mathbf{A}\mathbf{y} \leq \mathbf{b} & s.t & \mathbf{A}^T \boldsymbol{\lambda} + \mathbf{1} = \mathbf{0}, \boldsymbol{\lambda} \geq \mathbf{0}. \end{split}$$

Lemma

Let $I = \{i \mid [\mathbf{y}^{old} \ 0]^T a_i = b_i\}$. $(\mathbf{y}^{old}, 0)$ is optimal iff $\exists \lambda \ge \mathbf{0}$ such that $\mathbf{A}_I^T \mathbf{\lambda} + \mathbf{1} = \mathbf{0}$.

LP for (n+1) system:

$$\begin{split} \min_{y_1,\dots,y_{n+1}} \mathbf{1}^{\mathsf{T}} \mathbf{y} & \max - \mathbf{b}^{\mathsf{T}} \boldsymbol{\lambda} \\ s.t & \mathsf{A} \mathbf{y} \leq \mathbf{b} & s.t & \mathsf{A}^{\mathsf{T}} \boldsymbol{\lambda} + \mathbf{1} = \mathbf{0}, \boldsymbol{\lambda} \geq \mathbf{0}. \end{split}$$

Lemma

Let $I = \{i \mid [\mathbf{y}^{old} \ 0]^T a_i = b_i\}$. $(\mathbf{y}^{old}, 0)$ is optimal iff $\exists \lambda \ge \mathbf{0}$ such that $\mathbf{A}_I^T \mathbf{\lambda} + \mathbf{1} = \mathbf{0}$.

Proof Idea

Follows from the KKT conditions on feasible point $(\mathbf{y}^{old}, 0)$.

LP for (n+1) system:

$$\begin{split} \min_{\substack{\mathcal{Y}_1, \dots, \mathcal{Y}_{n+1}}} \mathbf{1}^{\mathcal{T}} \mathbf{y} & \max - \mathbf{b}^{\mathcal{T}} \boldsymbol{\lambda} \\ s.t & \mathbf{A} \mathbf{y} \leq \mathbf{b} & s.t & \mathbf{A}^{\mathcal{T}} \boldsymbol{\lambda} + \mathbf{1} = \mathbf{0}, \boldsymbol{\lambda} \geq \mathbf{0}. \end{split}$$

Lemma

Let $I = \{i \mid [\mathbf{y}^{old} \ 0]^T a_i = b_i\}$. $(\mathbf{y}^{old}, 0)$ is optimal iff $\exists \lambda \ge \mathbf{0}$ such that $\mathbf{A}_I^T \mathbf{\lambda} + \mathbf{1} = \mathbf{0}$.

Proof Idea

Follows from the KKT conditions on feasible point $(\mathbf{y}^{old}, 0)$.

In practice, we check this condition to decide if redesign is needed or not. With Probability 1 it is not needed.

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example

Analysis

Efficiently Scalable Design

Simulation Results

Conclusion

Average Storage

• Used U = [5, 6, 7], D = [1, 3, 5] and B = 1024
Average Storage

• Used U = [5, 6, 7], D = [1, 3, 5] and B = 1024

 PARE-Code has a lower average storage per node compared to coded sharding

Probability of Redesign

Pattern	U	D
1	[5,6,7]	[1,3,5]
2	[3,2,4,1,5,2]	[1,2,2,1,1,4]
3	[11,2]	[1,4]
4	[8,2]	[4,4]

Probability of Redesign

Pattern	U	D
1	[5,6,7]	[1,3,5]
2	[3,2,4,1,5,2]	[1,2,2,1,1,4]
3	[11,2]	[1,4]
4	[8,2]	[4,4]

▶ $Prob[(\mathbf{y}^{old}, \mathbf{0}) \text{ is optimal}] \rightarrow 1$ as number of nodes increases

Table of Contents

Motivation

Blockchain Background Objective Prior Work

Blockchain Erasure Model

Patterned Model Design Goal

PARE-Code

Construction Example

Analysis

Efficiently Scalable Design

Simulation Results

Conclusion

Conclusion and Ongoing Work

Conclusion:

- We provide a coding scheme which minimally corrects a predefined set of erasure patterns and is optimal in terms of average storage per node
- We prove that with high probability no redesign is needed using our code when there are sufficiently large number of nodes in the system

Conclusion and Ongoing Work

Conclusion:

- We provide a coding scheme which minimally corrects a predefined set of erasure patterns and is optimal in terms of average storage per node
- We prove that with high probability no redesign is needed using our code when there are sufficiently large number of nodes in the system

Ongoing Work:

- Effect of node leaving the system
- Communication cost during recovery from erasures

Thank you!