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Motivation Blockchain Background

Blockchain Ledger

I N blocks B1,B2, . . . ,BN .

I Stored in the form of a hash chain =⇒ Tamper proof

4 / 25



Motivation Objective

Storage Burden in Blockchains

Figure: P2P Network

I P2P Network of n nodes

I Each node stores full ledger

I Decentralized

I Can correct up to (n − 1)
node failures

Significant storage cost

Goal: Reduce storage costs without reducing blockchain availability
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Motivation Prior Work

Prior Work: Coded Sharding1,2

Nodes: N1 N2 Nn

I Blockchain of size B partitioned into k shards s1, s2, . . . , sk
I n coded shards s̃1, s̃2, . . . , s̃n generated using (n, k) MDS code

I Each node Ni stores one coded shard

I Storage at each Node: B
k , corrects all (n − k) node failures

1M. Dai, S. Zhag, H. Wang, and S. Jin, “A low storage room requirement framework
for distributed ledger in blockchain,” IEEE Access, Mar. 2018.

2D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based low storage
blockchain node,” arXiv:1805.00860, May 2018.
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Blockchain Erasure Model Patterned Model

Patterned Erasures

I In practice, nodes fail periodically3

I Different nodes with different periodicities
=⇒ only specific patterns of erasures possible

Node 3:

Node 2:

Node 1:

× ×XXXX × ×XXXX
XX ×XX ×XX ×XX ×
XXX ×XXX ×XXX × Periodicity modelled by

I uptime, downtime (u,d)

I phase p ∈ [0, u]

I Patterned Erasure Set P =
{
{N1}, {N2}, {N3}, {N1,N2}, {N1,N3}

}
I Can reduce storage per node by designing codes which correct only

these erasure patterns

3S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj: A peer to peer
storage network,”, Dec. 2014.
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Blockchain Erasure Model Design Goal

Goal: Storage Reduction in Patterned Erasure Model

I For a blockchain of size B with n nodes {N1,N2, . . .Nn} and erasure
patterned set P = {P1,P2, . . . ,P|P|}, design a code which guarantees
to corrects all erasure patterns in P and has minimum average
storage per node

Lemma
Using Coded Sharding to correct all erasure patterns in P, storage per
node ≥ B

n−t , where t = max|Pj |.
I Good enough to use an (n, k) MDS code which corrects all t erasure

patterns

Observation:

I In Coded Sharding, each node stores the same no. of shards

We can get a better average storage per node by relaxing this condition

9 / 25



Blockchain Erasure Model Design Goal

Goal: Storage Reduction in Patterned Erasure Model

I For a blockchain of size B with n nodes {N1,N2, . . .Nn} and erasure
patterned set P = {P1,P2, . . . ,P|P|}, design a code which guarantees
to corrects all erasure patterns in P and has minimum average
storage per node

Lemma
Using Coded Sharding to correct all erasure patterns in P, storage per
node ≥ B

n−t , where t = max|Pj |.

I Good enough to use an (n, k) MDS code which corrects all t erasure
patterns

Observation:

I In Coded Sharding, each node stores the same no. of shards

We can get a better average storage per node by relaxing this condition

9 / 25



Blockchain Erasure Model Design Goal

Goal: Storage Reduction in Patterned Erasure Model

I For a blockchain of size B with n nodes {N1,N2, . . .Nn} and erasure
patterned set P = {P1,P2, . . . ,P|P|}, design a code which guarantees
to corrects all erasure patterns in P and has minimum average
storage per node

Lemma
Using Coded Sharding to correct all erasure patterns in P, storage per
node ≥ B

n−t , where t = max|Pj |.
I Good enough to use an (n, k) MDS code which corrects all t erasure

patterns

Observation:

I In Coded Sharding, each node stores the same no. of shards

We can get a better average storage per node by relaxing this condition

9 / 25



Blockchain Erasure Model Design Goal

Goal: Storage Reduction in Patterned Erasure Model

I For a blockchain of size B with n nodes {N1,N2, . . .Nn} and erasure
patterned set P = {P1,P2, . . . ,P|P|}, design a code which guarantees
to corrects all erasure patterns in P and has minimum average
storage per node

Lemma
Using Coded Sharding to correct all erasure patterns in P, storage per
node ≥ B

n−t , where t = max|Pj |.
I Good enough to use an (n, k) MDS code which corrects all t erasure

patterns

Observation:

I In Coded Sharding, each node stores the same no. of shards

We can get a better average storage per node by relaxing this condition

9 / 25



Blockchain Erasure Model Design Goal

Goal: Storage Reduction in Patterned Erasure Model

I For a blockchain of size B with n nodes {N1,N2, . . .Nn} and erasure
patterned set P = {P1,P2, . . . ,P|P|}, design a code which guarantees
to corrects all erasure patterns in P and has minimum average
storage per node

Lemma
Using Coded Sharding to correct all erasure patterns in P, storage per
node ≥ B

n−t , where t = max|Pj |.
I Good enough to use an (n, k) MDS code which corrects all t erasure

patterns

Observation:

I In Coded Sharding, each node stores the same no. of shards

We can get a better average storage per node by relaxing this condition

9 / 25



PARE-Code

Table of Contents

Motivation
Blockchain Background
Objective
Prior Work

Blockchain Erasure Model
Patterned Model
Design Goal

PARE-Code
Construction
Example
Analysis

Efficiently Scalable Design

Simulation Results

Conclusion

10 / 25



PARE-Code Construction

Optimal Shard Allocation

I Let the blockchain be partitioned into k shards s1, s2, . . . , sk

I Let xi coded shards be storage at Node Ni

Average storage per node:
B

n

∑n
i=1 xi
k

I Depends on k and the total number of shards stored,
∑n

i=1 xi
I To minimize average storage, k and x = (x1, x2, . . . , xn) should be

jointly optimized

Condition for Blockchain recoverability:

I For each patterned erasure set, the number of coded shards in its
complement should be at least k

11 / 25
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PARE-Code Construction

Optimal Shard Allocation

I Considering k and xi ’s as variables

I Code construction involves solving the following:
(where P̄j denotes the set of nodes not in Pj)

Integer Optimization

min
x1,...,xn,k

B

n

∑n
i=1 xi
k

s.t
∑

i :Ni∈P̄j

xi ≥ k, j = 1, 2, . . . , |P|

xi ∈ Z+, i = 1, 2, . . . , n

k ∈ Z++

I Optimal solution (x∗, k∗).
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PARE-Code Construction

Code Construction
PARE (Pattern Aware Redundancy for Erasures)- Code :
I mth coded shard at Ni : α

1
i ,ms1 + α2

i ,ms2 + . . .+ αk∗
i ,msk∗ , 1 ≤ m ≤ x∗i

I ανi ,m chosen st. for each patterned set Pj , and {i : Ni ∈ P̄j}, the
following matrix has rank k∗

. . . .

. . . .
α1
i ,1 α2

i ,1 α3
i ,1 . . . . . . αk∗

i ,1

α1
i ,2 α2

i ,2 α3
i ,2 . . . . . . αk∗

i ,2

. . . .

. . . .
α1
i ,x∗i

α2
i ,x∗i

α3
i ,x∗i

. . . . . . αk∗
i ,x∗i

. . . .

. . . .


I Can always choose a sufficiently large field to get required ανi ,m
I E.g. can choose ανi ,m to form Vandermonde type matrices

13 / 25
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. . . .

. . . .
α1
i ,1 α2

i ,1 α3
i ,1 . . . . . . αk∗

i ,1

α1
i ,2 α2

i ,2 α3
i ,2 . . . . . . αk∗

i ,2

. . . .

. . . .
α1
i ,x∗i

α2
i ,x∗i

α3
i ,x∗i

. . . . . . αk∗
i ,x∗i

. . . .

. . . .


I Can always choose a sufficiently large field to get required ανi ,m
I E.g. can choose ανi ,m to form Vandermonde type matrices

13 / 25



PARE-Code Construction

Equivalence with Linear Programming

Integer Optimization

min
x1,...,xn,k

B

n

∑n
i=1 xi
k

s.t
∑

i :Ni∈P̄j

xi ≥ k, j = 1, 2, . . . , |P|

xi ∈ Z+, i = 1, 2, . . . , n ; k ∈ Z++

≡

Linear Program

min
y1,...,yn

n∑
i=1

yi

s.t
∑

i :Ni∈P̄j

yi ≥ 1, j = 1, 2, . . . , |P|

yi ≥ 0, i = 1, 2, . . . , n

Equivalence:

I If y∗ = (y∗1 , y
∗
2 , . . . , y

∗
n ) is an optimal solution of the LP, then choose

k∗ st. k∗ × y∗ = (k∗y∗1 , k
∗y∗2 , . . . , k

∗y∗n ) is integral and x∗ = k∗ × y∗

I (x∗, k∗) is optimal for Integer Optimization problem
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PARE-Code Example

PARE-Example
I 6 Nodes: {N1,N2,N3,N4,N5,N6}

I y∗ = ( 1
2 ,

1
4 , 0,

1
2 ,

1
4 ,

3
4 )

I k∗ = 4 and x∗ = (2, 1, 0, 2, 1, 3)

P =


{N1,N3,N4,N5}
{N1,N3,N6}
{N2,N3,N5,N6}
{N1,N2,N4}
{N4,N6}



I Partition blockchain into 4 shards {a, b, c, d}

N1

a + b + c

c + d

N2

a

N3
−

N4

b

c N5

a + d

N6

b

c

d

I Average storage per node using PARE-Code: 0.375B
I Average storage per node using (6,2) MDS code: 0.5B
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PARE-Code Analysis

Theoretical Analysis

Lemma
Average storage per node for PARE-Code is no more than B

n−t , where
t = max|Pj |.

Proof Idea
Coded sharding with k = n − t and xi = 1 ∀i is a feasible solution and
achieves an objective value of B

n−t .

Theorem
PARE-Code gives the minimum average storage per node of all codes that
correct all erasure patterns in P.

Proof Idea
For any coding scheme, if B1,B2, . . . ,Bn are the amounts of the
blockchain stored at N1,N2, . . . ,Nn respectively, then
Bi ’s must satisfy

∑
i :Ni∈P̄j

Bi ≥ B =⇒ Bi
B is feasible in the LP.
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Efficiently Scalable Design

Effect of Adding a New Node

I (n, k) code used in Coded Sharding depends on number of nodes n

I Consider a system with n nodes and optimal solution yold

I Assume uptimes U = [u1, u2, . . . , ur ] and downtimes set
D = [d1, d2, . . . , dr ]. Each node Ni randomly picks a 1 ≤ i ≤ r and
selects the (ui , di ) pair and a phase pi ∈ [0, ui ].

Theorem
For the (n+1) system Prob[(yold , 0) is optimal ]→ 1 as n→∞ using
PARE-Code.

Redesigning the coding is not needed when scaling up the number of nodes

Proof Idea
For sufficiently large n, the probability that the (n + 1)st node has the
same periodicity pattern as one of earlier nodes tends to 1.
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Efficiently Scalable Design

Condition for Redesign

LP for (n + 1) system:

min
y1,...,yn+1

1Ty max−bTλ

s.t Ay ≤ b s.t ATλ + 1 = 0,λ ≥ 0.

Lemma
Let I = {i | [yold 0]Tai = bi}. (yold , 0) is optimal iff ∃λ ≥ 0 such that
AT

I λ + 1 = 0.

Proof Idea
Follows from the KKT conditions on feasible point (yold , 0).

I In practice, we check this condition to decide if redesign is needed or
not. With Probability 1 it is not needed.
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Simulation Results
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Simulation Results

Average Storage

No. of Nodes
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I Used U = [5, 6, 7], D = [1, 3, 5] and B = 1024

I PARE-Code has a lower average storage per node compared to coded
sharding
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Simulation Results

Probability of Redesign

No. of Nodes

P
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]

Pattern U D
1 [5,6,7] [1,3,5]

2 [3,2,4,1,5,2] [1,2,2,1,1,4]

3 [11,2] [1,4]

4 [8,2] [4,4]

I Prob[(yold , 0) is optimal]→ 1 as number of nodes increases
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Conclusion

Conclusion and Ongoing Work

Conclusion:

I We provide a coding scheme which minimally corrects a predefined
set of erasure patterns and is optimal in terms of average storage per
node

I We prove that with high probability no redesign is needed using our
code when there are sufficiently large number of nodes in the system

Ongoing Work:

I Effect of node leaving the system

I Communication cost during recovery from erasures
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Thank you!
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