Polar Coded Merkle Tree: Improved Detection of Data Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz, and Lara Dolecek

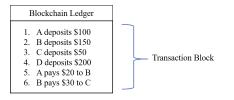
Electrical and Computer Engineering University of California, Los Angeles

ISIT 2022

- Distributed Ledger
- Decentralized trust platforms

- Distributed Ledger
- Decentralized trust platforms
- Main Application:
 - Finance and currency

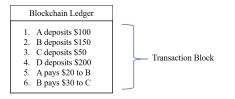
- Distributed Ledger
- Decentralized trust platforms
- Main Application:
 - Finance and currency
- Emerging Applications:
 - Healthcare services
 - Supply chain management
 - Industrial IoT
 - e-voting



Ledger of transactions

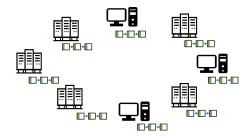
35. C pays \$10 to D 36. D pays \$30 to A 37. B pays \$20 to D 38. C pays \$10 to B

.

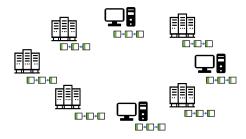


- Ledger of transactions
- Arranged in the form of blocks

35. C pays \$10 to D 36. D pays \$30 to A 37. B pays \$20 to D 38. C pays \$10 to B



- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Full nodes: store a copy of the entire ledger

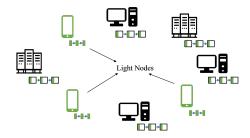


- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Full nodes: store a copy of the entire ledger

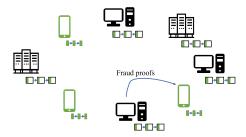
- Bitcoin ledger size ~ 400GB¹
- Ethereum ledger size \sim 730GB 2

As of 6/5/2022, ¹https://www.blockchain.com/charts/blocks-size ²https://etherscan.io/chartsync/chaindefault

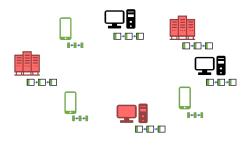
Mitra, Tauz, Dolecek (UCLA)



- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Full nodes: store a copy of the entire ledger
- Light nodes: only store block headers



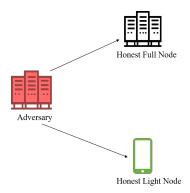
- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Full nodes: store a copy of the entire ledger
- ► Light nodes: only store block headers → rely on honest full nodes for fraud proofs



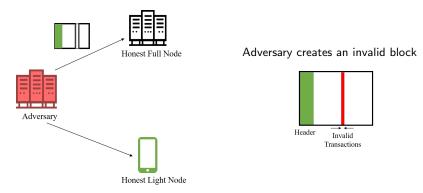
- Ledger of transactions
- Arranged in the form of blocks
- Stored by a network of nodes
- Full nodes: store a copy of the entire ledger
- ► Light nodes: only store block headers → rely on honest full nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are vulnerable to data availability attacks [Al-Bassam '18], [Yu '19]

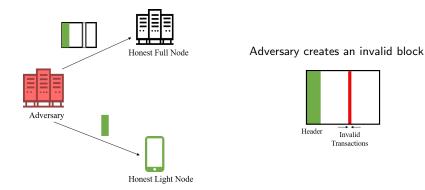
Adversary creates an invalid block



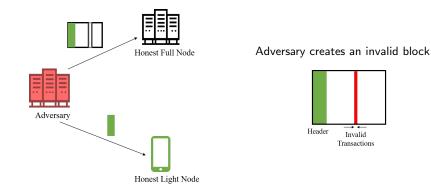
Adversary creates an invalid block



Adversary: Provides block to Full node but hides invalid portion

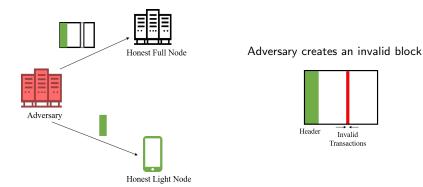


Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

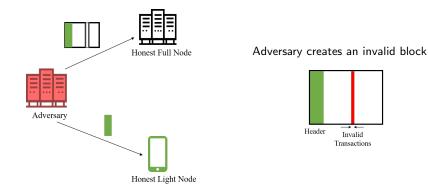


Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

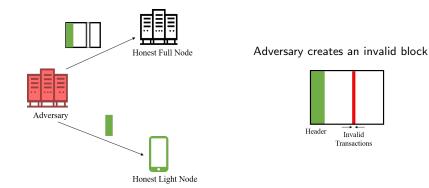
Honest Nodes: Cannot verify missing transactions



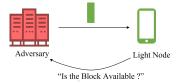
- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- ▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

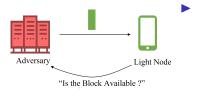


- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof
- Light Nodes: No fraud proof

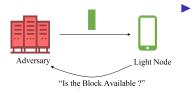


- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof
- Light Nodes: No fraud proof \rightarrow Accept the header

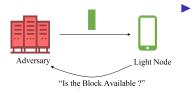




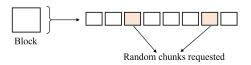
Request/sample few random chunks of the block



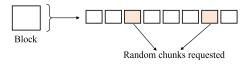
Request/sample few random chunks of the block



Request/sample few random chunks of the block

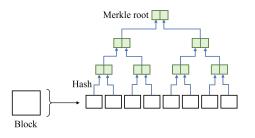


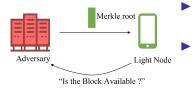
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks



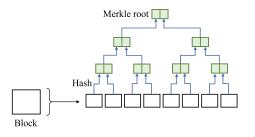


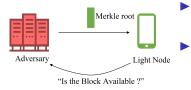
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks



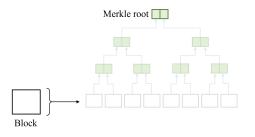


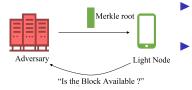
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks



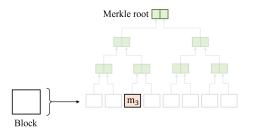


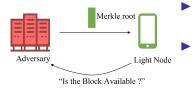
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks



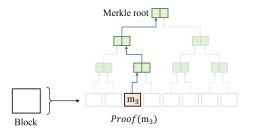


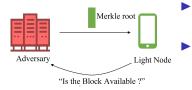
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks



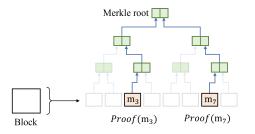


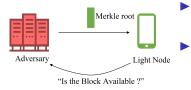
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks





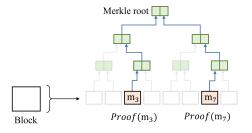
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks

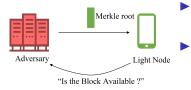




- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks

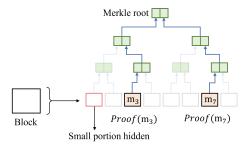
Adversary can hide a small portion

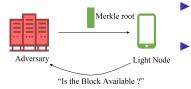




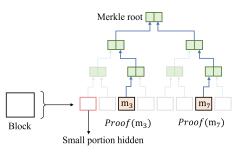
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks

Adversary can hide a small portion



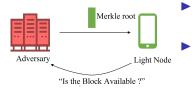


- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks

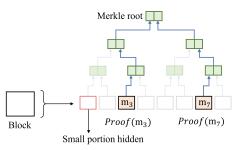


Adversary can hide a small portion

Probability of failure using 2 random samples:



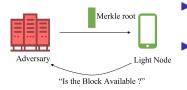
- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks



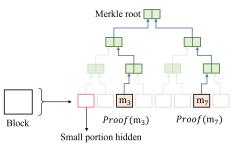
Adversary can hide a small portion

Probability of failure using 2 random samples:

$$\left(1 - \frac{1}{8}\right) \left(1 - \frac{1}{7}\right) = 0.75$$



- Request/sample few random chunks of the block
- Use Merkle trees to ensure the integrity of returned chunks

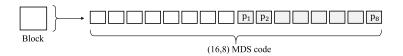


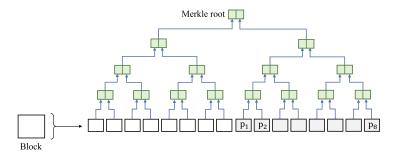
Adversary can hide a small portion

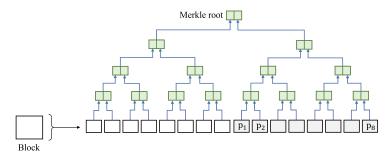
Probability of failure using 2 random samples:

$$\left(1-\frac{1}{8}\right)\left(1-\frac{1}{7}\right) = 0.75$$

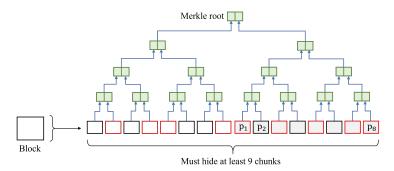
Erasure coding is used to improve the probability of failure



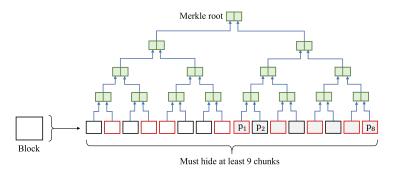




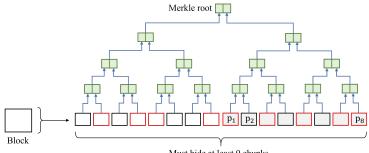
Adversary must hide more coded chunks



Adversary must hide more coded chunks

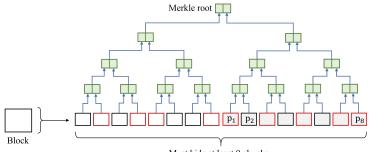


➤ Adversary must hide more coded chunks → easier for light nodes to catch using random sampling



➤ Adversary must hide more coded chunks → easier for light nodes to catch using random sampling Probability of failure using 2 random samples:

$$\left(1 - \frac{9}{16}\right)\left(1 - \frac{9}{15}\right) = 0.175$$



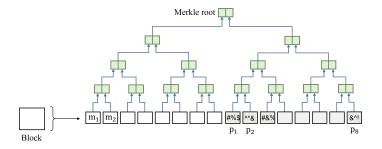
 Adversary must hide more coded chunks
→ easier for light nodes to catch using random sampling Probability of failure using 2 random samples:

$$\left(1 - \frac{9}{16}\right)\left(1 - \frac{9}{15}\right) = 0.175$$

Adversary can incorrectly encode the block!

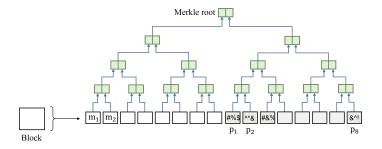
Adversary:

Incorrectly encodes the block



Adversary:

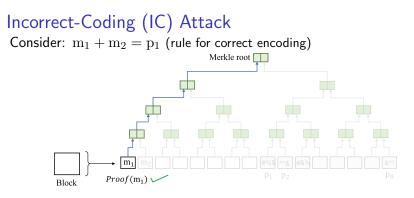
Incorrectly encodes the block



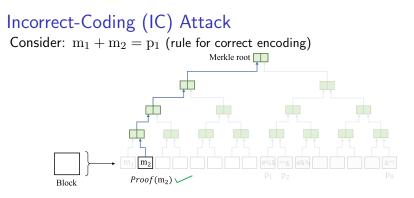
- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered

Incorrect-Coding (IC) Attack Consider: $m_1 + m_2 = p_1$ (rule for correct encoding) Merkle root $m_1 m_2$ $m_1 m_2$ $m_1 m_2$ $m_1 m_2$ $m_2 m_2$ $m_1 m_2$

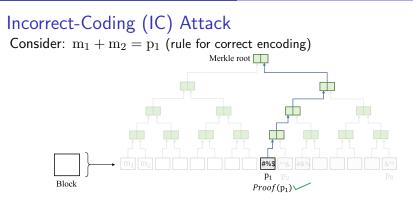
- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered



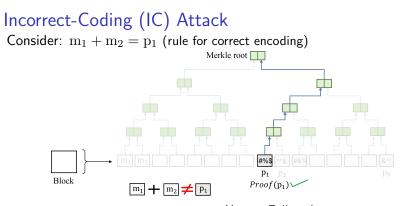
- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered



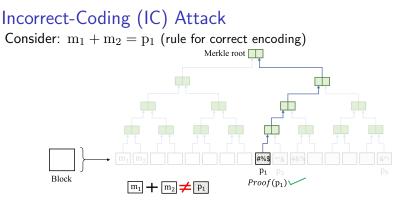
- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered



- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered



- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered

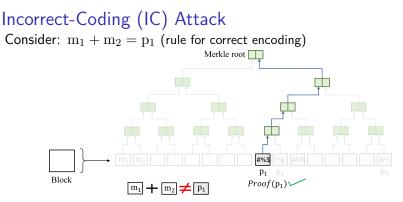


Adversary:

- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered

Honest Full node:

IC-proof: m₁, m₂, p₁, Proof(m₁), Proof(m₂), Proof(p₁)

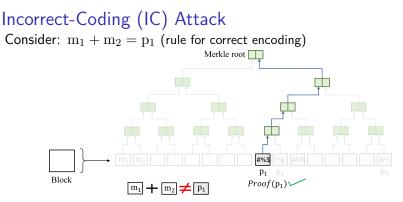


Adversary:

- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered

Honest Full node:

- IC-proof: m₁, m₂, p₁, Proof(m₁), Proof(m₂), Proof(p₁)
- IC-proof size \propto degree of parity check equation



Adversary:

- Incorrectly encodes the block
- Hides less chunks since original block cannot be recovered

Honest Full node:

- IC-proof: m₁, m₂, p₁, Proof(m₁), Proof(m₂), Proof(p₁)
- ► IC-proof size ∝ degree of parity check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam '18] [Santini '22]: $O(\sqrt{b})$

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}

- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}
 - minimum number of coded symbols the adversary must hide to prevent decoding

- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}
 - minimum number of coded symbols the adversary must hide to prevent decoding
 - Probability of failure $P_f(s) = \left(1 \frac{\alpha_{\min}}{N}\right)^s$ [per light node]

- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}
 - minimum number of coded symbols the adversary must hide to prevent decoding
 - Probability of failure $P_f(s) = \left(1 \frac{\alpha_{\min}}{N}\right)^s$ [per light node]
- 3. Complexity of computing α_{\min}

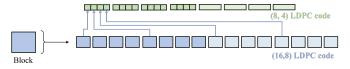
- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}
 - minimum number of coded symbols the adversary must hide to prevent decoding
 - Probability of failure $P_f(s) = \left(1 \frac{\alpha_{\min}}{N}\right)^s$ [per light node]
- 3. Complexity of computing α_{\min}
 - Important at large code length ${\cal N}$

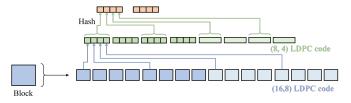
- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}
 - minimum number of coded symbols the adversary must hide to prevent decoding
 - Probability of failure $P_f(s) = \left(1 \frac{\alpha_{\min}}{N}\right)^s$ [per light node]
- 3. Complexity of computing α_{\min}
 - Important at large code length ${\cal N}$
- 4. Decoding complexity

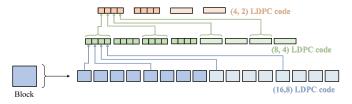
Important performance metrics for this application:

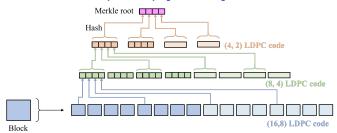
- 1. IC-proof size: must be small in comparison to the block size
- 2. Undecodable threshold α_{\min}
 - minimum number of coded symbols the adversary must hide to prevent decoding
 - Probability of failure $P_f(s) = \left(1 \frac{\alpha_{\min}}{N}\right)^s$ [per light node]
- 3. Complexity of computing α_{\min}
 - Important at large code length ${\cal N}$
- 4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that performs well on all the above metrics for large transaction block sizes.

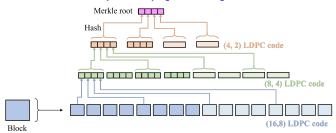




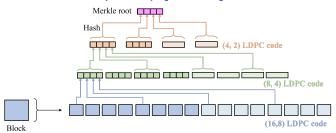




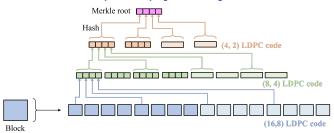
 Uses Low-Density Parity-Check (LDPC) code to encode each layer of the Merkle Tree



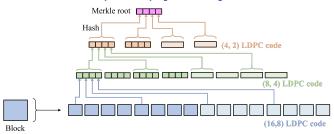
► Uses Low-Density Parity-Check (LDPC) code to encode each layer of the Merkle Tree → Detects DA attacks on any layer of CMT



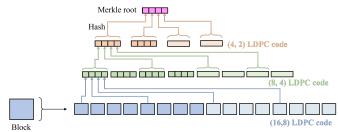
- ► Uses Low-Density Parity-Check (LDPC) code to encode each layer of the Merkle Tree → Detects DA attacks on any layer of CMT Performance:
 - 1. IC-proof size: small due to sparse parity check equations



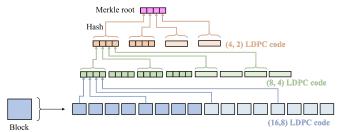
- ► Uses Low-Density Parity-Check (LDPC) code to encode each layer of the Merkle Tree → Detects DA attacks on any layer of CMT Performance:
 - 1. IC-proof size: small due to sparse parity check equations
 - 2. Decoding complexity: linear in code length using a peeling decoder



- ► Uses Low-Density Parity-Check (LDPC) code to encode each layer of the Merkle Tree → Detects DA attacks on any layer of CMT Performance:
 - 1. IC-proof size: small due to sparse parity check equations
 - 2. Decoding complexity: linear in code length using a peeling decoder
 - 3. What about undecodable threshold α_{\min} and complexity of computing α_{\min} ?

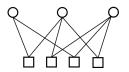


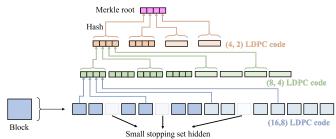
Challenge with LDPC codes: Stopping sets



Challenge with LDPC codes: Stopping sets

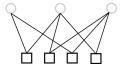
Substructure in the Tanner Graph

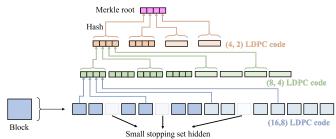




Challenge with LDPC codes: Stopping sets

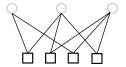
- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block

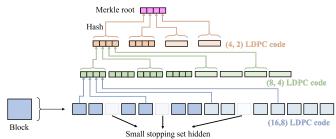




Challenge with LDPC codes: Stopping sets

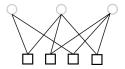
- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block
- Undecodable threshold \(\alpha_{\mu\in} = \size\) of smallest stopping set



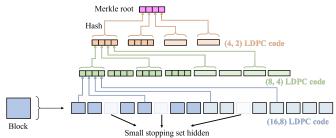


Challenge with LDPC codes: Stopping sets

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block
- ► Undecodable threshold \(\alpha_{\mu\nin} = size of smallest stopping set \(\rightarrow NP-hard to compute [Krishnan '07]\)

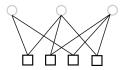


10 / 22



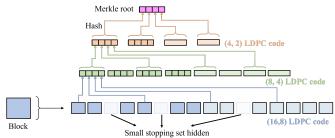
Challenge with LDPC codes: Stopping sets

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block
- ► Undecodable threshold \(\alpha_{\mu\nin} = \size \) of smallest stopping set \(\rightarrow \n \mathbf{P}\)-hard to compute [Krishnan '07]



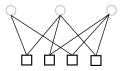
Merkle tree construction using polar codes allows for an efficient method to compute α_{\min}

Mitra, Tauz, Dolecek (UCLA)



Challenge with LDPC codes: Stopping sets

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block
- ► Undecodable threshold \(\alpha_{\mu\nin} = \size \) of smallest stopping set \(\rightarrow \n \mathbf{P}\)-hard to compute [Krishnan '07]

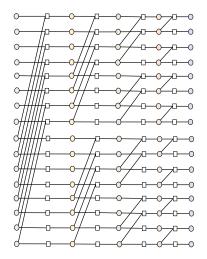


Merkle tree construction using polar codes allows for an efficient method to compute α_{\min} while having small IC-proof size and decoding complexity.

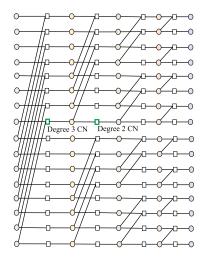
Polar codes

Dense parity check matrices [Goela '10]

- Dense parity check matrices [Goela '10]
- Sparse encoding graph



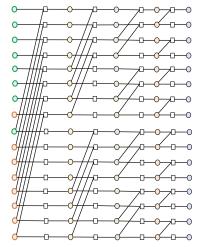
- Dense parity check matrices [Goela '10]
- Sparse encoding graph



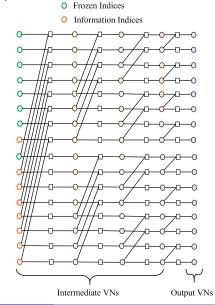
O Frozen Indices

Information Indices

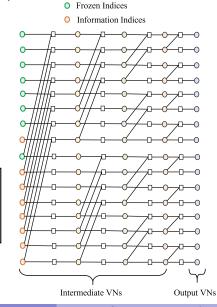
- Dense parity check matrices [Goela '10]
- Sparse encoding graph



- Dense parity check matrices [Goela '10]
- Sparse encoding graph
- Intermediate VNs in addition to output VNs



- Dense parity check matrices [Goela '10]
- Sparse encoding graph
- Intermediate VNs in addition to output VNs

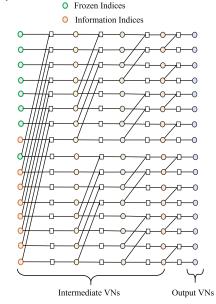


Polar codes

- Dense parity check matrices [Goela '10]
- Sparse encoding graph
- Intermediate VNs in addition to output VNs

PCMT

- store the hashes of the intermediate VNs



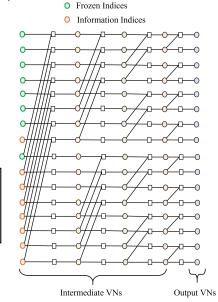
Polar codes

- Dense parity check matrices [Goela '10]
- Sparse encoding graph
- Intermediate VNs in addition to output VNs

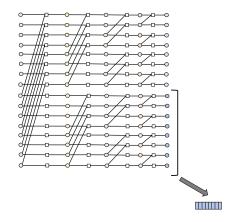
PCMT

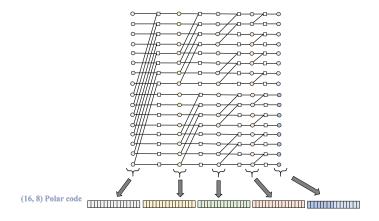
- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs for the degree 2 and degree 3 CNs

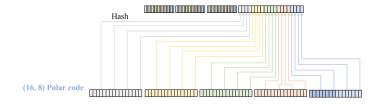


Data Chunks

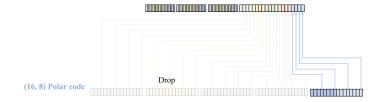


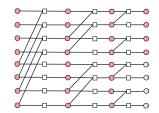


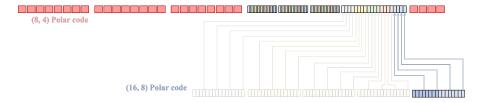




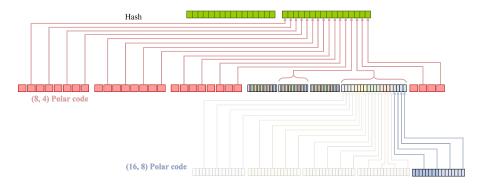
Mitra, Tauz, Dolecek (UCLA)



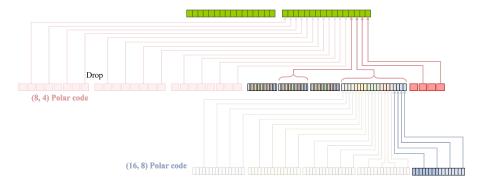


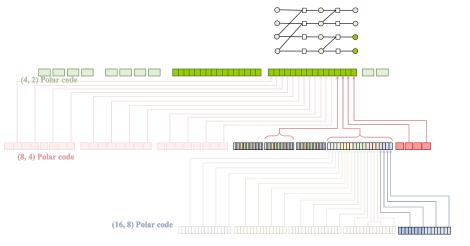


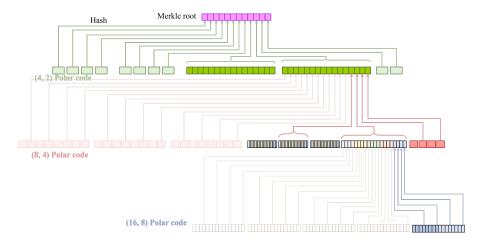
Mitra, Tauz, Dolecek (UCLA)

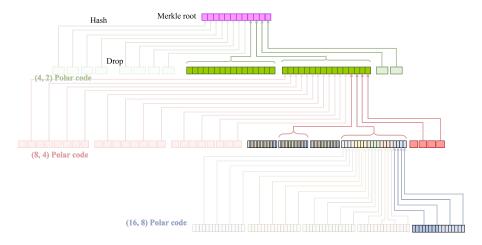


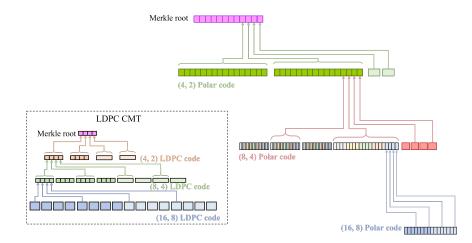
Mitra, Tauz, Dolecek (UCLA)

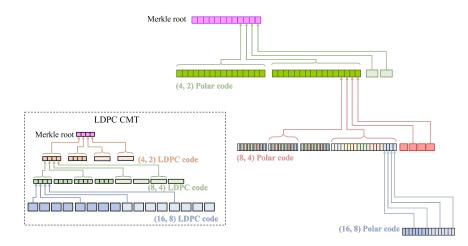




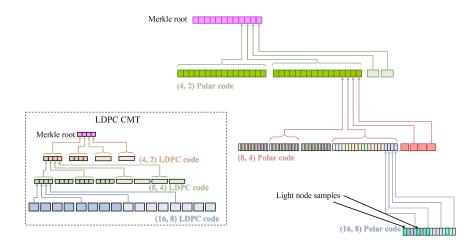






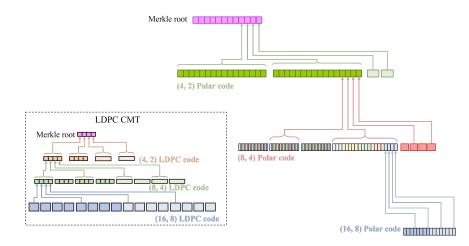


Dropped VNs can be decoded back using a peeling decoder

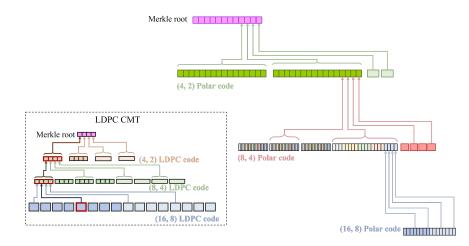


- Dropped VNs can be decoded back using a peeling decoder
- Light nodes sample the non-dropped VNs

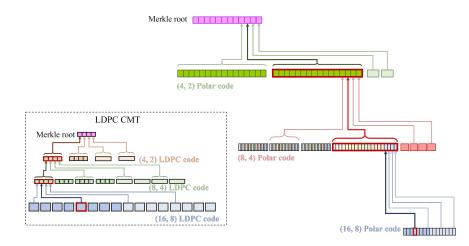
PCMT: Merkle Proofs



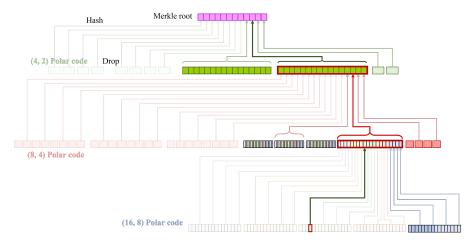
Both dropped and non-dropped VNs have merkle proofs



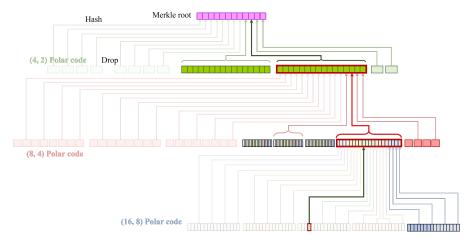
Both dropped and non-dropped VNs have merkle proofs



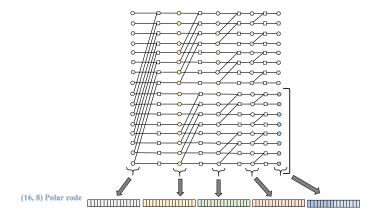
Both dropped and non-dropped VNs have merkle proofs



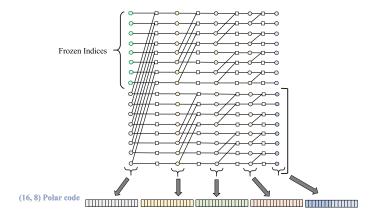
Both dropped and non-dropped VNs have merkle proofs

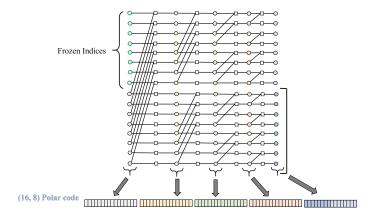


- Both dropped and non-dropped VNs have merkle proofs
- Used for integrity checks and in IC-proofs similar to LDPC CMT

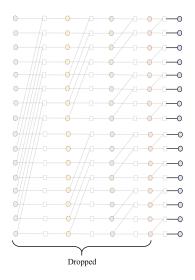


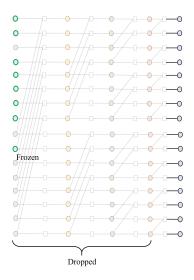
Mitra, Tauz, Dolecek (UCLA)

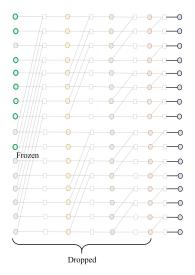




Not the best choice for frozen indices

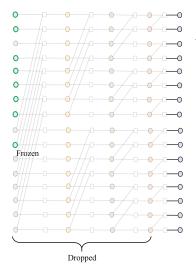






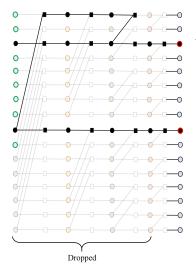
Adversary:

Cannot hide frozen VNs



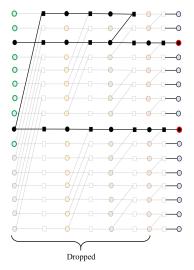
Adversary:

- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable



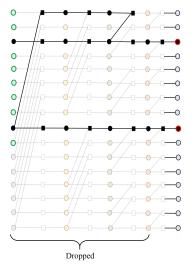
Adversary:

- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable



Adversary:

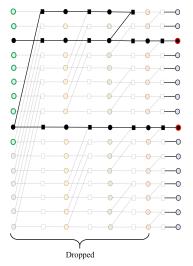
- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable
- Hide the leaf set of a stopping set with no frozen VNs



Adversary:

- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable
- Hide the leaf set of a stopping set with no frozen VNs

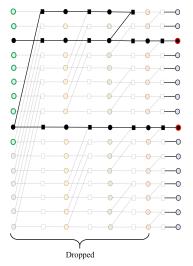
Undecodable threshold α_{\min}



Adversary:

- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable
- Hide the leaf set of a stopping set with no frozen VNs

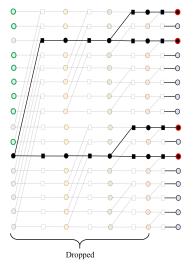
 $\label{eq:amplitude} \begin{array}{l} \mbox{Undecodable threshold } \alpha_{\min} \\ = \mbox{smallest leaf set size of all stopping} \\ \mbox{sets with no frozen VNs} \end{array}$



Adversary:

- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable
- Hide the leaf set of a stopping set with no frozen VNs

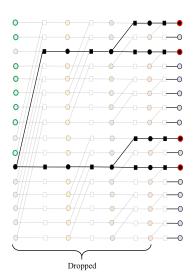
Undecodable threshold α_{\min} = smallest leaf set size of all stopping sets with no frozen VNs = smallest leaf set size of all stopping trees with no frozen VNs [Eslami '13]

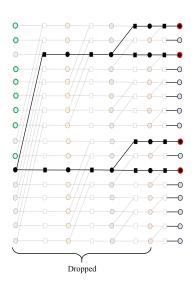


Adversary:

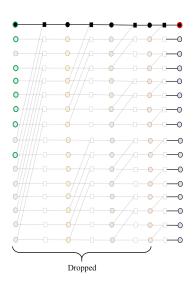
- Cannot hide frozen VNs
- Must hide non-dropped VNs such that a stopping set becomes unavailable
- Hide the leaf set of a stopping set with no frozen VNs

Undecodable threshold α_{\min} = smallest leaf set size of all stopping sets with no frozen VNs = smallest leaf set size of all stopping trees with no frozen VNs [Eslami '13]

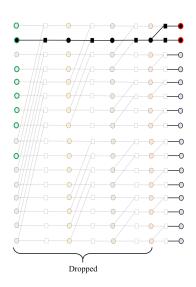




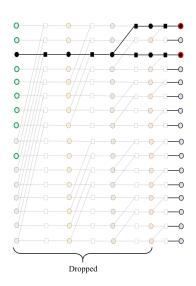
Stopping Trees:



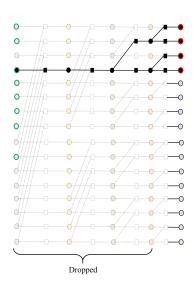
Stopping Trees:



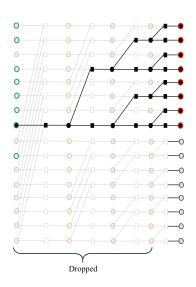
Stopping Trees:



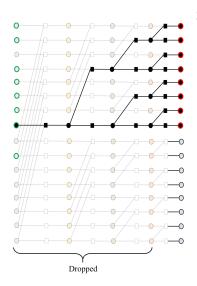
Stopping Trees:



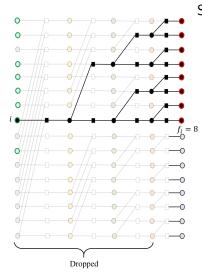
Stopping Trees:



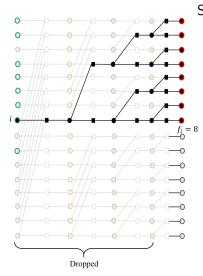
Stopping Trees:



- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

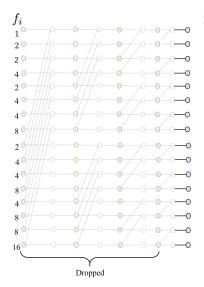


- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN



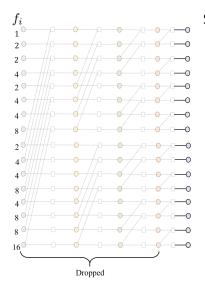
- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

$$\alpha_{\min} = \min_{i \text{ not frozen}} f_i$$



- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

$$\alpha_{\min} = \min_{i \text{ not frozen}} f_i$$

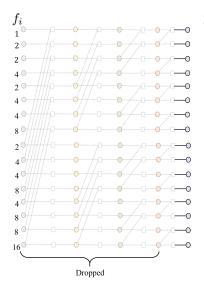


Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method

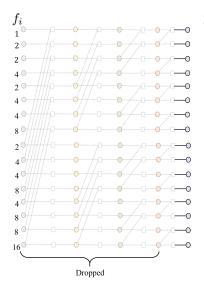


Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method - For (N,k) polar code, select the indices with N-k smallest leaf set sizes as frozen set.



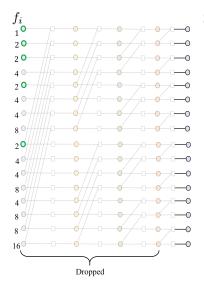
Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method - For (N,k) polar code, select the indices with N-k smallest leaf set sizes as frozen set.

E.g. (16, 8) polar code:



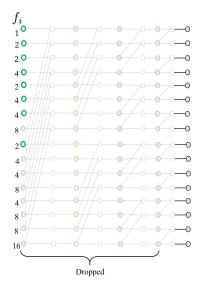
Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method - For (N,k) polar code, select the indices with N-k smallest leaf set sizes as frozen set.

E.g. (16, 8) polar code:



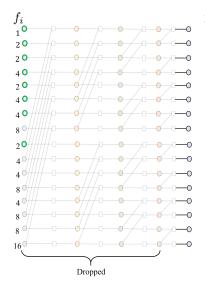
Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method - For (N,k) polar code, select the indices with N-k smallest leaf set sizes as frozen set.

E.g. (16, 8) polar code:



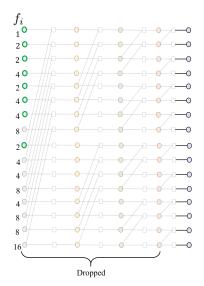
Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method - For (N,k) polar code, select the indices with N-k smallest leaf set sizes as frozen set.

E.g. (16, 8) polar code: $\alpha_{\min} = 4$.



Stopping Trees:

- Every VN in the leftmost column is associated with a unique stopping tree
- f_i = leaf set size of stopping tree associated with *i*th VN

 $\alpha_{\min} = \min_{i \text{ not frozen}} f_i$

Naive selection method - For (N,k) polar code, select the indices with N-k smallest leaf set sizes as frozen set.

E.g. (16, 8) polar code: $\alpha_{\min} = 4$.

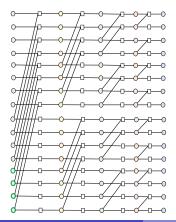
Can we do better ?

16 / 22

Sampling Efficient Freezing (SEF) Algorithm

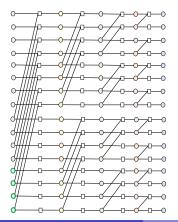
Lemma

If we freeze last μ indices from the bottom of the encoding graph,



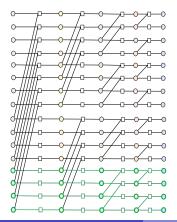
Lemma

If we freeze last μ indices from the bottom of the encoding graph, then a stopping set with no frozen VNs cannot have a VN from the last μ rows of the encoding graph.



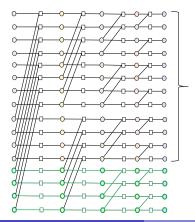
Lemma

If we freeze last μ indices from the bottom of the encoding graph, then a stopping set with no frozen VNs cannot have a VN from the last μ rows of the encoding graph.



Lemma

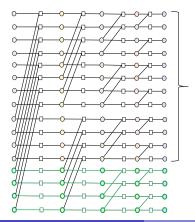
If we freeze last μ indices from the bottom of the encoding graph, then a stopping set with no frozen VNs cannot have a VN from the last μ rows of the encoding graph.



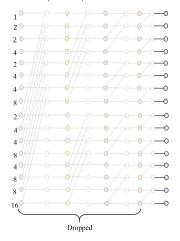
Light nodes do not need to sample
VNs from the last μ rows

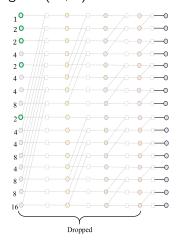
Lemma

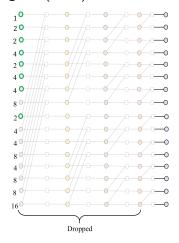
If we freeze last μ indices from the bottom of the encoding graph, then a stopping set with no frozen VNs cannot have a VN from the last μ rows of the encoding graph.

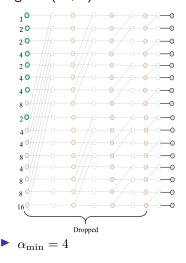


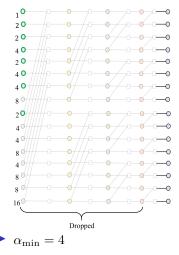
 Light nodes do not need to sample VNs from the last µ rows
Improves the effective undecodable threshold





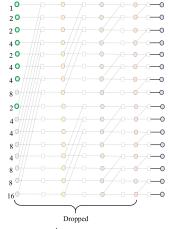


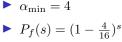


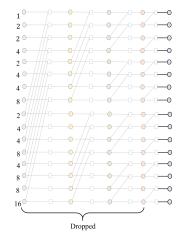


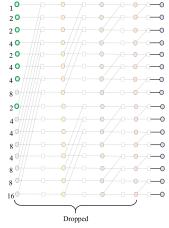
►
$$P_f(s) = (1 - \frac{4}{16})^s$$

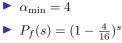
Mitra, Tauz, Dolecek (UCLA)

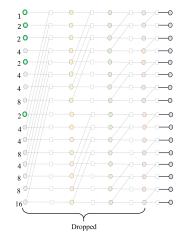


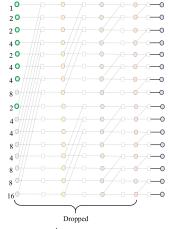


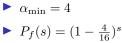


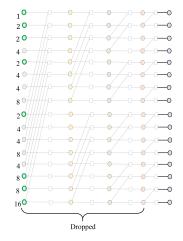


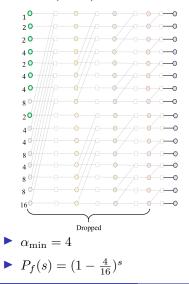


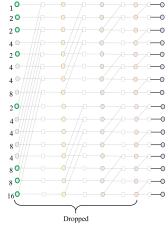




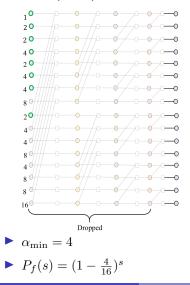


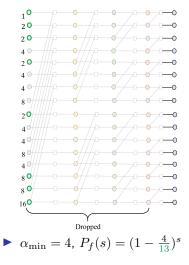


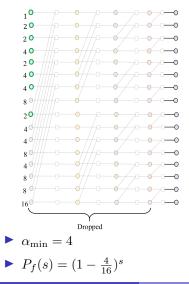


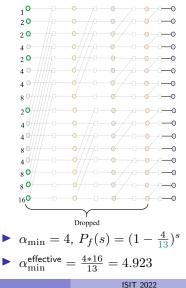


• $\alpha_{\min} = 4$,









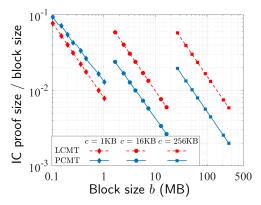
Simulation Results: IC-proof size

Parameters: Rate R = 0.5, Code length N, Data chunk size c, Block size b = cRN, Hash size = 32B

Simulation Results: IC-proof size

Parameters: Rate R = 0.5, Code length N, Data chunk size c, Block size b = cRN, Hash size = 32B

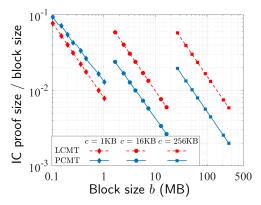
LCMT: LDPC CMT



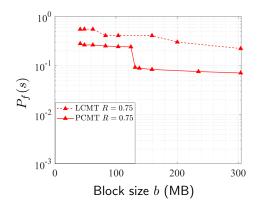
Simulation Results: IC-proof size

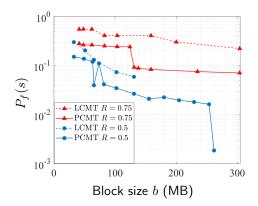
Parameters: Rate R = 0.5, Code length N, Data chunk size c, Block size b = cRN, Hash size = 32B

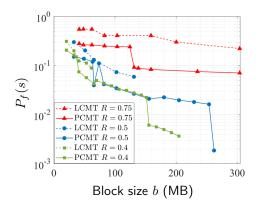
LCMT: LDPC CMT



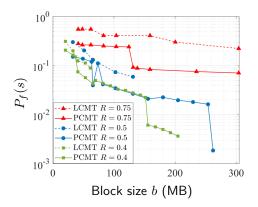
For large block sizes, IC-proof size of PCMT is lower than LCMT





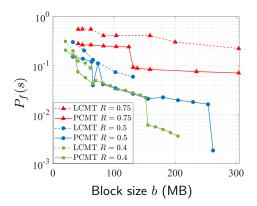


Code length N, Data chunk size c = 256KB, Hash size 32B, Block size b = cRN, number of samples s such that total sample download is $\frac{b}{5}$



For large block sizes (100-300MB), $P_f(s)$ for PCMT is lower than LCMT

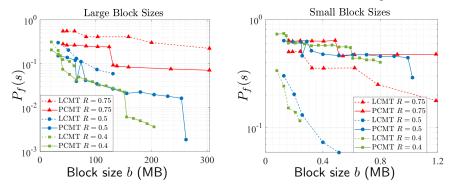
Code length N, Data chunk size c = 256KB, Hash size 32B, Block size b = cRN, number of samples s such that total sample download is $\frac{b}{5}$



For large block sizes (100-300MB), $P_f(s)$ for PCMT is lower than LCMT

• Note: For small block sizes, $P_f(s)$ for PCMT gets worse than LCMT

Code length N, Data chunk size c = 256KB, Hash size 32B, Block size b = cRN, number of samples s such that total sample download is $\frac{b}{5}$



For large block sizes (100-300MB), $P_f(s)$ for PCMT is lower than LCMT

• Note: For small block sizes, $P_f(s)$ for PCMT gets worse than LCMT

Conclusion:

Conclusion:

 Provided a novel construction of a Merkle Tree using Polar codes called PCMT

Conclusion:

- Provided a novel construction of a Merkle Tree using Polar codes called PCMT
- A specialized polar code construction for PCMT called SEF algorithm

Conclusion:

- Provided a novel construction of a Merkle Tree using Polar codes called PCMT
- A specialized polar code construction for PCMT called SEF algorithm
- PCMT with SEF polar codes perform well in detecting DA attacks and offers a new trade-off in various metrics compared to prior literature

Conclusion:

- Provided a novel construction of a Merkle Tree using Polar codes called PCMT
- A specialized polar code construction for PCMT called SEF algorithm
- PCMT with SEF polar codes perform well in detecting DA attacks and offers a new trade-off in various metrics compared to prior literature

Future Work:

Conclusion:

- Provided a novel construction of a Merkle Tree using Polar codes called PCMT
- A specialized polar code construction for PCMT called SEF algorithm
- PCMT with SEF polar codes perform well in detecting DA attacks and offers a new trade-off in various metrics compared to prior literature

Future Work:

Improve the PCMT construction to make it not store hashes of all VNs of the encoding graph

Conclusion:

- Provided a novel construction of a Merkle Tree using Polar codes called PCMT
- A specialized polar code construction for PCMT called SEF algorithm
- PCMT with SEF polar codes perform well in detecting DA attacks and offers a new trade-off in various metrics compared to prior literature

Future Work:

- Improve the PCMT construction to make it not store hashes of all VNs of the encoding graph
- Extend the PCMT construction to other encoding trellises

References

- (Al-Bassam '18) M. Al-Bassam, et al., "Fraud and Data Availability Proofs: Maximising Light Client Security and Scaling Blockchains with Dishonest Majorities," arXiv preprint arXiv:1809.09044, 2018.
- (Yu '19) M. Yu, et al., "Coded Merkle Tree: Solving Data Availability Attacks in Blockchains," *International Conference on Financial Cryptography and Data Security*, Springer, Cham, 2020.
- (Krishnan '07) K. M. Krishnan, and P. Shankar, "Computing the stopping distance of a Tanner graph is NP-hard," *IEEE Transactions on Information Theory*, vol. 53, no. 6, pp. 2278-2280, Jun. 2007.
- (Goela '10) N. Goela, S. B. Korada, and M. Gastpar, "On LP decoding of polar codes," *IEEE Information Theory Workshop*, pp. 1-5, Aug. 2010.
- (Eslami '13) A. Eslami, H. Pishro-Nik, "On finite-length performance of polar codes: stopping sets, error floor, and concatenated design," *IEEE Transactions on Communications*, vol. 61, no. 3, pp. 919-929, Feb. 2013
- (Santini '22) P. Santini, G. Rafaiani, M. Battaglioni, F. Chiaraluce, M. Baldi, "Optimization of a Reed-Solomon code-based protocol against blockchain data availability attacks", *arXiv preprint arXiv:2201.08261*, 2022.

Simulation Results

 \mathcal{T}_1 : small block size \mathcal{T}_2 : large block size

	2D-RS [Al-Bassam '18]		LCMT		PCMT	
	[Santini '22]					
	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2
Root size (KB)	2.05	5.82	0.26	0.51	1.02	2.56
IC proof size (MB)	5.80	16.40	1.54	1.54	0.53	0.54
Undecodable threshold α_{\min}	Analytical expression		NP-hard		Analytical expression	
Decoding complexity	$O(N^{1.5})$		O(N)		$O(N \lceil \log N \rceil)$	

Simulation Results

 \mathcal{T}_1 : small block size \mathcal{T}_2 : large block size

	2D-RS [Al-Bassam '18]		LCMT		PCMT	
	[Santini '22]					
	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2
Root size (KB)	2.05	5.82	0.26	0.51	1.02	2.56
IC proof size (MB)	5.80	16.40	1.54	1.54	0.53	0.54
Undecodable threshold α_{\min}	Analytical expression		NP-hard		Analytical expression	
Decoding complexity	$O(N^{1.5})$		O(N)		$O(N \lceil \log N \rceil)$	

PCMT offers a new trade-off in the metrics of importance compared to LCMT and 2D-RS codes that were used in prior literature