
Polar Coded Merkle Tree: Improved Detection of Data
Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering
University of California, Los Angeles

ISIT 2022

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 1 / 22



Blockchain Background

Blockchain

▶ Distributed Ledger

▶ Decentralized trust platforms

▶ Main Application:

• Finance and currency

▶ Emerging Applications:

• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 2 / 22



Blockchain Background

Blockchain

▶ Distributed Ledger

▶ Decentralized trust platforms
▶ Main Application:

• Finance and currency

▶ Emerging Applications:

• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 2 / 22



Blockchain Background

Blockchain

▶ Distributed Ledger

▶ Decentralized trust platforms
▶ Main Application:

• Finance and currency

▶ Emerging Applications:

• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 2 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers

→ rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers

→ rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers

→ rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers

→ rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers

→ rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers → rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers → rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 3 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

▶ Light Nodes: No fraud proof → Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 5 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 6 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack

Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack

Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack

Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack

Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Incorrect-Coding (IC) Attack
Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 7 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s

[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s

[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s

[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s

[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s
[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s
[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s
[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s
[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s
[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 8 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree → Detects DA attacks on any layer of CMT

Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree → Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations

2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree → Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder

3. What about undecodable threshold αmin and complexity of computing
αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree → Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 9 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets

▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set

→ NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets
▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set

→ NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets
▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set

→ NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets
▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set

→ NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets
▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set → NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets
▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set → NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets
▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set → NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin while having small IC-proof size and decoding complexity.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 10 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT
- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT
- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 11 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 12 / 22



Polar Coded Merkle Tree

PCMT: Merkle Proofs

▶ Both dropped and non-dropped VNs have merkle proofs

▶ Used for integrity checks and in IC-proofs similar to LDPC CMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 13 / 22



Polar Coded Merkle Tree

PCMT: Merkle Proofs

▶ Both dropped and non-dropped VNs have merkle proofs

▶ Used for integrity checks and in IC-proofs similar to LDPC CMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 13 / 22



Polar Coded Merkle Tree

PCMT: Merkle Proofs

▶ Both dropped and non-dropped VNs have merkle proofs

▶ Used for integrity checks and in IC-proofs similar to LDPC CMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 13 / 22



Polar Coded Merkle Tree

PCMT: Merkle Proofs

▶ Both dropped and non-dropped VNs have merkle proofs

▶ Used for integrity checks and in IC-proofs similar to LDPC CMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 13 / 22



Polar Coded Merkle Tree

PCMT: Merkle Proofs

▶ Both dropped and non-dropped VNs have merkle proofs

▶ Used for integrity checks and in IC-proofs similar to LDPC CMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 13 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

▶ Not the best choice for frozen indices

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 14 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

▶ Not the best choice for frozen indices

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 14 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

▶ Not the best choice for frozen indices

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 14 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs

= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 15 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method
- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method
- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code:

αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method
- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code:

αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method
- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code:

αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method
- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Frozen Index Selection for PCMT

fi Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method
- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 16 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm

Lemma
If we freeze last µ indices from the bottom of the encoding graph,

then a
stopping set with no frozen VNs cannot have a VN from the last µ rows of
the encoding graph.

▶ Light nodes do not need to sample
VNs from the last µ rows

-Improves the effective undecodable
threshold

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 17 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm

Lemma
If we freeze last µ indices from the bottom of the encoding graph, then a
stopping set with no frozen VNs cannot have a VN from the last µ rows of
the encoding graph.

▶ Light nodes do not need to sample
VNs from the last µ rows

-Improves the effective undecodable
threshold

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 17 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm

Lemma
If we freeze last µ indices from the bottom of the encoding graph, then a
stopping set with no frozen VNs cannot have a VN from the last µ rows of
the encoding graph.

▶ Light nodes do not need to sample
VNs from the last µ rows

-Improves the effective undecodable
threshold

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 17 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm

Lemma
If we freeze last µ indices from the bottom of the encoding graph, then a
stopping set with no frozen VNs cannot have a VN from the last µ rows of
the encoding graph.

▶ Light nodes do not need to sample
VNs from the last µ rows

-Improves the effective undecodable
threshold

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 17 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm

Lemma
If we freeze last µ indices from the bottom of the encoding graph, then a
stopping set with no frozen VNs cannot have a VN from the last µ rows of
the encoding graph.

▶ Light nodes do not need to sample
VNs from the last µ rows
-Improves the effective undecodable
threshold

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 17 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4,

Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4, Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )

s

▶ αmin = 4, Pf (s) = (1− 4
13 )

s

▶ αeffective
min = 4∗16

13 = 4.923

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 18 / 22



Simulation Results

Simulation Results: IC-proof size
Parameters: Rate R = 0.5, Code length N , Data chunk size c,
Block size b = cRN , Hash size = 32B

LCMT: LDPC CMT

Block size b (MB)

IC
pr
o
of

si
ze

/
b
lo
ck

si
ze

▶ For large block sizes, IC-proof size of PCMT is lower than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 19 / 22



Simulation Results

Simulation Results: IC-proof size
Parameters: Rate R = 0.5, Code length N , Data chunk size c,
Block size b = cRN , Hash size = 32B

LCMT: LDPC CMT

Block size b (MB)

IC
pr
o
of

si
ze

/
b
lo
ck

si
ze

▶ For large block sizes, IC-proof size of PCMT is lower than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 19 / 22



Simulation Results

Simulation Results: IC-proof size
Parameters: Rate R = 0.5, Code length N , Data chunk size c,
Block size b = cRN , Hash size = 32B

LCMT: LDPC CMT

Block size b (MB)

IC
pr
o
of

si
ze

/
b
lo
ck

si
ze

▶ For large block sizes, IC-proof size of PCMT is lower than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 19 / 22



Simulation Results

Simulation Results: Probability of failure
Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Simulation Results: Probability of failure
Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

Block size b (MB)

P
f
(s
)

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Simulation Results: Probability of failure
Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

Block size b (MB)

P
f
(s
)

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Simulation Results: Probability of failure
Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

Block size b (MB)

P
f
(s
)

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Simulation Results: Probability of failure
Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

Block size b (MB)

P
f
(s
)

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Simulation Results: Probability of failure
Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

Block size b (MB)

P
f
(s
)

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Simulation Results: Probability of failure

Code length N , Data chunk size c = 256KB, Hash size 32B, Block size
b = cRN , number of samples s such that total sample download is b

5

Block size b (MB)

P
f
(s
)

Block size b (MB)
P
f
(s
)

▶ For large block sizes (100-300MB), Pf (s) for PCMT is lower than LCMT

• Note: For small block sizes, Pf (s) for PCMT gets worse than LCMT

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 20 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 21 / 22



Simulation Results

References

• (Al-Bassam ’18) M. Al-Bassam, et al., “Fraud and Data Availability Proofs:
Maximising Light Client Security and Scaling Blockchains with Dishonest
Majorities,” arXiv preprint arXiv:1809.09044, 2018.

• (Yu ’19) M. Yu, et al., “Coded Merkle Tree: Solving Data Availability Attacks in
Blockchains,” International Conference on Financial Cryptography and Data
Security, Springer, Cham, 2020.

• (Krishnan ’07) K. M. Krishnan, and P. Shankar, “Computing the stopping distance
of a Tanner graph is NP-hard,” IEEE Transactions on Information Theory, vol. 53,
no. 6, pp. 2278-2280, Jun. 2007.

• (Goela ’10) N. Goela, S. B. Korada, and M. Gastpar, “On LP decoding of polar
codes,” IEEE Information Theory Workshop, pp. 1-5, Aug. 2010.

• (Eslami ’13) A. Eslami, H. Pishro-Nik, “On finite-length performance of polar
codes: stopping sets, error floor, and concatenated design,” IEEE Transactions on
Communications, vol. 61, no. 3, pp. 919-929, Feb. 2013

• (Santini ’22) P. Santini, G. Rafaiani, M. Battaglioni, F. Chiaraluce, M. Baldi,
“Optimization of a Reed-Solomon code-based protocol against blockchain data
availability attacks”, arXiv preprint arXiv:2201.08261, 2022.

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 22 / 22



Simulation Results

T1: small block size
T2: large block size

2D-RS [Al-Bassam ’18] LCMT PCMT
[Santini ’22]

T1 T2 T1 T2 T1 T2
Root size (KB) 2.05 5.82 0.26 0.51 1.02 2.56

IC proof size (MB) 5.80 16.40 1.54 1.54 0.53 0.54
Undecodable threshold αmin Analytical expression NP-hard Analytical expression

Decoding complexity O(N1.5) O(N) O(N⌈logN⌉)

▶ PCMT offers a new trade-off in the metrics of importance compared to
LCMT and 2D-RS codes that were used in prior literature

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 1 / 1



Simulation Results

T1: small block size
T2: large block size

2D-RS [Al-Bassam ’18] LCMT PCMT
[Santini ’22]

T1 T2 T1 T2 T1 T2
Root size (KB) 2.05 5.82 0.26 0.51 1.02 2.56

IC proof size (MB) 5.80 16.40 1.54 1.54 0.53 0.54
Undecodable threshold αmin Analytical expression NP-hard Analytical expression

Decoding complexity O(N1.5) O(N) O(N⌈logN⌉)

▶ PCMT offers a new trade-off in the metrics of importance compared to
LCMT and 2D-RS codes that were used in prior literature

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 1 / 1


	Blockchain Background
	Data Availability Attacks
	Polar Coded Merkle Tree
	Simulation Results
	Appendix

