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Blockchain Background

Blockchain

▶ Distributed Ledger

▶ Decentralized trust platforms

▶ Main Application:

• Finance and currency

▶ Emerging Applications:

• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting
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Blockchain Background

Blockchain

▶ Bitcoin ledger size ∼ 400GB1

▶ Ethereum ledger size ∼ 730GB2

▶ Ledger of transactions

▶ Arranged in the form of blocks

▶ Stored by a network of nodes

▶ Full nodes: store a copy of the
entire ledger

▶ Light nodes: only store block
headers

→ rely on honest full
nodes for fraud proofs

Systems with light nodes and a dishonest majority of full nodes are

vulnerable to data availability attacks [Al-Bassam ’18], [Yu ’19]

As of 6/5/2022, 1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chaindefault
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Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions

→ No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

▶ Light Nodes: No fraud proof

→ Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Data Availability (DA) Attack

Adversary creates an invalid block

▶ Adversary: Provides block to Full node but hides invalid portion
Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof

▶ Light Nodes: No fraud proof → Accept the header

Mitra, Tauz, Dolecek (UCLA) ISIT 2022 4 / 22



Data Availability Attacks

Solution: Light Node Sampling + Merkle Trees

▶ Request/sample few random chunks of the
block

▶ Use Merkle trees to ensure the integrity of
returned chunks

▶ Adversary can hide a small portion

Probability of failure
using 2 random samples:

(
1− 1

8

) (
1− 1

7

)
= 0.75

Erasure coding is used to im-

prove the probability of failure
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Data Availability Attacks

Erasure coding to Improve the Probability of Failure

▶ Adversary must hide more coded chunks

→ easier for light nodes to catch using

random sampling

Probability of failure
using 2 random samples:

(
1− 9

16

) (
1− 9

15

)
= 0.175

Adversary can incorrectly encode the block!
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Data Availability Attacks

Incorrect-Coding (IC) Attack

Consider: m1 +m2 = p1 (rule for correct encoding)

Adversary:

▶ Incorrectly encodes the block

▶ Hides less chunks since original
block cannot be recovered

Honest Full node:

▶ IC-proof: m1, m2, p1,
Proof(m1), Proof(m2), Proof(p1)

▶ IC-proof size ∝ degree of parity
check equation

IC-Proof size- 1D-RS: O(b), 2D-RS [Al-Bassam ’18] [Santini ’22]: O(
√
b)
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Data Availability Attacks

Choice of Code

Important performance metrics for this application:

1. IC-proof size: must be small in comparison to the block size

2. Undecodable threshold αmin

• minimum number of coded symbols the adversary must hide to prevent
decoding

• Probability of failure Pf (s) =
(
1− αmin

N

)s

[per light node]

3. Complexity of computing αmin

• Important at large code length N

4. Decoding complexity

Our work: A novel construction of Merkle trees using polar codes that

performs well on all the above metrics for large transaction block sizes.
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Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

▶ Uses Low-Density Parity-Check (LDPC) code to encode each layer of
the Merkle Tree

→ Detects DA attacks on any layer of CMT
Performance:

1. IC-proof size: small due to sparse parity check equations
2. Decoding complexity: linear in code length using a peeling decoder
3. What about undecodable threshold αmin and complexity of computing

αmin?
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Data Availability Attacks

Coded Merkle Tree (CMT) [Yu ’19]

Challenge with LDPC codes: Stopping sets

▶ Substructure in the Tanner Graph

▶ If hidden, prevents peeling decoder from decoding
the block

▶ Undecodable threshold αmin = size of smallest

stopping set

→ NP-hard to compute [Krishnan ’07]

Merkle tree construction using polar codes allows for an efficient method

to compute αmin

while having small IC-proof size and decoding complexity.
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Polar Coded Merkle Tree

Polar Coded Merkle Tree (PCMT)

Polar codes
▶ Dense parity check matrices [Goela ’10]

▶ Sparse encoding graph

▶ Intermediate VNs in addition to output

VNs

PCMT

- store the hashes of the intermediate VNs

- use these hashes to build small IC-proofs

for the degree 2 and degree 3 CNs
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Polar Coded Merkle Tree

PCMT Construction

▶ Dropped VNs can be decoded back using a peeling decoder

▶ Light nodes sample the non-dropped VNs
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Polar Coded Merkle Tree

PCMT: Merkle Proofs

▶ Both dropped and non-dropped VNs have merkle proofs

▶ Used for integrity checks and in IC-proofs similar to LDPC CMT
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Frozen Index Selection for PCMT
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Polar Coded Merkle Tree

Frozen Index Selection for PCMT

Adversary:

▶ Cannot hide frozen VNs

▶ Must hide non-dropped VNs such that
a stopping set becomes unavailable

▶ Hide the leaf set of a stopping set with
no frozen VNs

Undecodable threshold αmin

= smallest leaf set size of all stopping
sets with no frozen VNs
= smallest leaf set size of all stopping
trees with no frozen VNs [Eslami ’13]
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Frozen Index Selection for PCMT

fi

Stopping Trees:

▶ Every VN in the leftmost column is
associated with a unique stopping tree

▶ fi = leaf set size of stopping tree
associated with ith VN

αmin = min
i not frozen

fi

Naive selection method

- For (N, k) polar code, select the in-
dices with N − k smallest leaf set sizes
as frozen set.

E.g. (16, 8) polar code: αmin = 4.

Can we do better ?
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Sampling Efficient Freezing (SEF) Algorithm

Lemma
If we freeze last µ indices from the bottom of the encoding graph,

then a
stopping set with no frozen VNs cannot have a VN from the last µ rows of
the encoding graph.

▶ Light nodes do not need to sample
VNs from the last µ rows

-Improves the effective undecodable
threshold
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Polar Coded Merkle Tree

Sampling Efficient Freezing (SEF) Algorithm
Design of (16, 8) Polar code:

▶ αmin = 4

▶ Pf (s) = (1− 4
16 )
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▶ αmin = 4,

Pf (s) = (1− 4
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▶ αeffective
min = 4∗16
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Simulation Results

Simulation Results: IC-proof size
Parameters: Rate R = 0.5, Code length N , Data chunk size c,
Block size b = cRN , Hash size = 32B
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Conclusion and Future Work

Conclusion:

▶ Provided a novel construction of a Merkle Tree using Polar codes called
PCMT

▶ A specialized polar code construction for PCMT called SEF algorithm

▶ PCMT with SEF polar codes perform well in detecting DA attacks and
offers a new trade-off in various metrics compared to prior literature

Future Work:

▶ Improve the PCMT construction to make it not store hashes of all VNs of
the encoding graph

▶ Extend the PCMT construction to other encoding trellises
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Simulation Results

T1: small block size
T2: large block size

2D-RS [Al-Bassam ’18] LCMT PCMT
[Santini ’22]

T1 T2 T1 T2 T1 T2
Root size (KB) 2.05 5.82 0.26 0.51 1.02 2.56

IC proof size (MB) 5.80 16.40 1.54 1.54 0.53 0.54
Undecodable threshold αmin Analytical expression NP-hard Analytical expression

Decoding complexity O(N1.5) O(N) O(N⌈logN⌉)

▶ PCMT offers a new trade-off in the metrics of importance compared to
LCMT and 2D-RS codes that were used in prior literature
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