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Data Availability (DA) Attacks in Blockchains

Light Nodes:

I Only store block headers

I Rely on honest full nodes for fraud notification

I Systems with dishonest majority of full nodes
are vulnerable to DA attacks [Al-Bassam ’18],
[Yu ’19]

DA attack:

Adversary creates an invalid block

I Full nodes: cannot send fraud proof

I Light nodes: accept the invalid header
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Ensure Data Availability: Light Node Sampling

I Anonymously sample few random chunks of the block

I Erasure coding used to improve probability of detection

I To improve storage efficiency, LDPC codes are used
[Yu ’19]

Probability of failure affected by small stopping sets
I If hidden, prevents a peeling decoder from decoding the

block

→ No fraud proof from full nodes

Probability of failure (2 samples):(
1− 3

32

)(
1− 3

31

)
= 0.81

Our work: Design of specialized LDPC codes with a coupled sampling

strategy to achieve a significantly lower probability of failure.
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Concentrated Stopping Set Design

In this work, we considered an adversary which randomly hides a stopping set of a
particular size.

Code Design Idea:

I Concentrate stopping sets to a small
section of VNs

I Greedily Sample this small section of
VNs

How to concentrate stopping sets?

I Concentrating cycles =⇒
Concentrating stopping sets

I We concentrate cycles by modifying
the Progressive Edge Growth (PEG)
algorithm
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Entropy to Concentrate Cycles: EC-PEG Algorithm

For distribution p = (p1, p2, . . . , pn), Entropy H(p) =
∑n

i=1 pi log
1
pi

I Uniform distributions have high entropy

I Concentrated distributions have low entropy

High Entropy Low Entropy

EC (Entropy Constrained)-PEG Algorithm
For each VN vj

Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• select a CN with min degree not

connected to vj
Else New cycles created
• Find CNs most distant to vj

• Update cycle distribution
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Sampling Strategy

I Greedy Sampling: greedily sample VNs that are part of a large number of cycles

I Random Sampling (with replacement): sample each variable node with equal
probability
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Simulation Results

Probability of failure for a stopping set of size µ

RS: Random Sampling
GS: Greedy Sampling

I Concentrated LDPC codes with Greedy sampling improve the probability of failure
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