Concentrated Stopping Set Design for Coded Merkle Tree: Improving Security Against Data Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering University of California, Los Angeles

ITW 2020

Blockchain

- Distributed Ledger
- Decentralized trust platforms

Application:

- Finance and currency
- Healthcare services
- Supply chain management
- Industrial IoT
- e-voting

¹As of 3/12/2021, https://bitinfocharts.com/

- Ledger maintained by a network of nodes
- Each node maintains a local copy of the ledger

¹As of 3/12/2021, https://bitinfocharts.com/

Significant storage overhead

¹As of 3/12/2021, https://bitinfocharts.com/

Ethereum ledger size ~ 600GB¹

¹As of 3/12/2021, https://bitinfocharts.com/

Significant storage overhead

- Ledger maintained by a network of nodes
- Each node maintains a local copy of the ledger
- Prohibitive for resource limited nodes

- Bitcoin ledger size ~ 350GB¹
- Ethereum ledger size ~ 600GB¹

¹As of 3/12/2021, https://bitinfocharts.com/

Mitra, Tauz, Dolecek (UCLA)

Mitra, Tauz, Dolecek (UCLA)

Light Nodes:

 Only store block headers (total size ~ 1GB for Ethereum)

Light Nodes:

- Only store block headers (total size ~ 1GB for Ethereum)
- Can verify transaction inclusion in a block
- ► Cannot verify transaction correctness → Rely on honest Full nodes for fraud notification

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary: Provides block to Full node but hides invalid portion

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- ▶ Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

 Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

▶ Honest Nodes: Cannot verify missing transactions → No fraud proof
▶ Light Nodes: No fraud proof

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

 Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

 \blacktriangleright Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof

• Light Nodes: No fraud proof \rightarrow accept the header.

 Anonymously request/sample few random chunks of the block

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Block

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Probability of failure using 2 random samples:

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Small portion hidden

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

..

Random chunks requested

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Erasure coding:

Random chunks requested

Small portion hidden

Probability of failure using 2 random samples:

Probability of failure using 2 random samples:

$$\left(1 - \frac{17}{32}\right)\left(1 - \frac{17}{31}\right) = 0.21$$

 $\left(1-\frac{1}{16}\right)\left(1-\frac{1}{15}\right)=0.87$

Incorrect coding attack:

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes

Incorrect coding attack:

- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: $\mathcal{O}(\text{sparsity of parity check equations})$

Incorrect coding attack:

- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: O(sparsity of parity check equations)
- MDS codes: proof size = $\mathcal{O}(\text{block size})$

Incorrect coding attack:

- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: O(sparsity of parity check equations)
- MDS codes: proof size = O(block size)
- Decoding complexity

Incorrect coding attack:

- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: O(sparsity of parity check equations)
- MDS codes: proof size = O(block size)
- Decoding complexity
- Undecodable ratio α

- Incorrect coding attack:
 - Adversary sends incorrectly coded block to Full Nodes
 - Honest Full nodes can detect and send incorrect coding proof
 - Incorrect coding proof size: O(sparsity of parity check equations)
 - MDS codes: proof size = O(block size)
- Decoding complexity
- Undecodable ratio α
 - Probability of Light node failure using s random samples = $(1 \alpha)^s$

LPDC codes:

Characterized by a sparse parity check matrix

LPDC codes:

Characterized by a sparse parity check matrix

ο 0 0 0 ο ο ο 0 о 0 Tanner Graph circles: variable nodes (VNs) squares: check nodes (CNs) ň 'n ñ п m m m m

LPDC codes:

Characterized by a sparse parity check matrix

LDPC codes have been shown to be suitable for this application [Yu' 19]

LPDC codes:

Characterized by a sparse parity check matrix

LDPC codes have been shown to be suitable for this application [Yu' 19]

Small incorrect coding proof size due to small check node degree

LPDC codes:

Characterized by a sparse parity check matrix

LDPC codes have been shown to be suitable for this application [Yu' 19]

- Small incorrect coding proof size due to small check node degree
- Linear decoding in terms of the block size using peeling decoder

LPDC codes:

Characterized by a sparse parity check matrix

LDPC codes have been shown to be suitable for this application [Yu' 19]

- Small incorrect coding proof size due to small check node degree
- Linear decoding in terms of the block size using peeling decoder
- What about the undecodable ratio?

Substructure in the Tanner Graph

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block → No fraud proof

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block → No fraud proof

Probability of failure using 2 random samples: $\left(1 - \frac{3}{32}\right)\left(1 - \frac{3}{31}\right) = 0.81$

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block → No fraud proof

Our work: Design of specialized LDPC codes with a coupled sampling strategy to achieve a significantly lower probability of failure.

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Lemma

Of all stopping sets (SSs) of size μ , when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L} , then

▶ Selecting a set \mathcal{L} of VNs which touches large no. of SSs → Prob. of failure \downarrow

Concentrated Stopping Set Design

Code Design Idea:

 Concentrate stopping sets to a small section of VNs

Concentrated Stopping Set Design

Concentrated VNs

000000000000

Concentrated Stopping Set Design

When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]

- When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- Concentrating cycles \implies Concentrating stopping sets

- When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- ► Concentrating cycles ⇒ Concentrating stopping sets
- How to design codes with concentrated cycles?

- When there are no degree 1 VNs, stopping sets are either cycles or interconnection of cycles [Tian '03]
- Concentrating cycles ⇒ Concentrating stopping sets
- How to design codes with concentrated cycles?
 We do so by modifying the well-known Progressive Edge Growth (PEG) algorithm

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion

- If \exists CNs not connected to v_j
 - Select a CN with min degree not connected to v_j

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j • Select a CN with min degree not connected to v_j Else

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i

Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

• Select a CN with min degree not connected to v_j

Else

- Find CNs most distant to v_j
- Select one with minimum degree

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_i

Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_i

• Select a CN with min degree not connected to v_i

Else

- Find CNs most distant to v_j
- Select one with minimum degree *New cycles created*

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to v_j
Select a CN with min degree not connected to v_j
Else
Find CNs most distant to v_j
Select one with minimum degree New cycles created

We modify the CN selection criteria in green to concentrate cycles

Using Entropy to Concentrate Cycles

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

Using Entropy to Concentrate Cycles

For distribution $p = (p_1, p_2, \ldots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

Uniform distributions have high entropy

Using Entropy to Concentrate Cycles

For distribution $p = (p_1, p_2, \ldots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

For distribution $p = (p_1, p_2, \ldots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \ldots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \ldots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

For distribution $p = (p_1, p_2, \dots, p_n)$, Entropy $\mathcal{H}(p) = \sum_{i=1}^n p_i \log \frac{1}{p_i}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs (v_1, v_2, \ldots, v_n)

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Ns (v_1, v_2, \dots, v_n) $\lambda_i^g :=$ No. of cycles of length g that v_i is a part of, g = 4, 6, 8 $\lambda_1^6 = \lambda_1^6 + 1$ $\lambda_6^6 = \lambda_6^6 + 1$

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

Candidate CNs : c_8 , c_9 , c_{10}

 For each CN candidate, calculate the resultant VN cycle counts

Candidate CNs : c_8 , c_9 , c_{10}

 For each CN candidate, calculate the resultant VN cycle counts

 $\blacktriangleright (\lambda_1^4, \dots, \lambda_n^4), (\lambda_1^6, \dots, \lambda_n^6), (\lambda_1^8, \dots, \lambda_n^8)$

Candidate CNs : c_8 , c_9 , c_{10}

 For each CN candidate, calculate the resultant VN cycle counts

$$(\lambda_1^4, \dots, \lambda_n^4), (\lambda_1^6, \dots, \lambda_n^6), (\lambda_1^8, \dots, \lambda_n^8) (\lambda_1^4, \dots, \lambda_n^4), (\lambda_1^6, \dots, \lambda_n^6), (\lambda_1^8, \dots, \lambda_n^8)$$

Candidate CNs : c₈, c₉, c₁₀
For each CN candidate, calculate the resultant VN cycle counts
(λ⁴₁,...,λ⁴_n), (λ⁶₁,...,λ⁶_n), (λ⁸₁,...,λ⁸_n)

$$(\lambda_1^4, \dots, \lambda_n^4), (\lambda_1^6, \dots, \lambda_n^6), (\lambda_1^8, \dots, \lambda_n^8)$$
$$(\lambda_1^4, \dots, \lambda_n^4), (\lambda_1^6, \dots, \lambda_n^6), (\lambda_1^8, \dots, \lambda_n^8)$$

CN selection procedure:

Select CN that results in minimum $\mathcal{H}(\frac{\alpha^4+\alpha^6+\alpha^8}{3})$

Note:

Minimizing the entropy of joint cycle counts ensures that all cycle distributions are concentrated towards the same set of VNs

Sampling Strategy

 Our sampling strategy greedily samples VNs that are part of a large number of cycles

 $g = {\rm smallest}$ cycle length in Tanner Graph ${\mathcal G}$ While sample set size < s

- v = VN that is part of largest no. of cycles of length g in \mathcal{G}
- $\bullet \text{ sample set} = \mathsf{sample set} \cup v$
- \bullet remove v and all incident edges from ${\mathcal G}$

Sampling Strategy

 Our sampling strategy greedily samples VNs that are part of a large number of cycles

 $g = \text{smallest cycle length in Tanner Graph } \mathcal{G}$ While sample set size < s• v = VN that is part of largest no. of cycles of length g in \mathcal{G} • sample set = sample set $\cup v$ • remove v and all incident edges from \mathcal{G} If \nexists cycles of length g in \mathcal{G}

•
$$g = g + 2$$

Simulation Results

Code parameters: Code length = 100, VN degree = 4, Rate = ¹/₂, girth = 6.

Simulation Results

Code parameters: Code length = 100, VN degree = 4, Rate = ¹/₂, girth = 6.

▶ VN indices arranged in decreasing order of cycle 6 fractions

Simulation Results

Code parameters: Code length = 100, VN degree = 4, Rate = ¹/₂, girth = 6.

VN indices arranged in decreasing order of cycle 6 fractions
Cycle 6 and cycle 8 concentrated towards same set of VNs
Fraction of SSs of size $11,\,12$ touched by different VNs

Fraction of SSs of size 11, 12 touched by different VNs SSs of size 11

VN indices arranged in decreasing order of cycle 6 fractions

VN indices arranged in decreasing order of cycle 6 fractions

- VN indices arranged in decreasing order of cycle 6 fractions
- SSs are concentrated towards the same set of VNs as the cycles

Probability of failure for a stopping set of size μ

Probability of failure for a stopping set of size μ

RS: Random Sampling

Probability of failure for a stopping set of size μ

RS: Random Sampling

Probability of failure for a stopping set of size μ

RS: Random Sampling GS: Greedy Sampling

Probability of failure for a stopping set of size μ

RS: Random Sampling GS: Greedy Sampling

Probability of failure for a stopping set of size μ

RS: Random Sampling GS: Greedy Sampling

 Concentrated LDPC codes with Greedy sampling improve the probability of failure

Incorrect Coding Proof Size

Depends on the maximum check node degree

Rate	Code length	VN degree	Ensemble [Yu '19]	PEG	EC-PEG
1	100	4	16	9	11
$\overline{2}$	200	4	16	9	15
1	100	4	8	7	10
$\overline{4}$	200	4	8	6	9

Table: Maximum CN degree for different codes.

Incorrect Coding Proof Size

Depends on the maximum check node degree

Rate	Code length	VN degree	Ensemble [Yu '19]	PEG	EC-PEG
$\frac{1}{2}$	100	4	16	9	11
	200	4	16	9	15
$\frac{1}{4}$	100	4	8	7	10
	200	4	8	6	9

Table: Maximum CN degree for different codes.

 Concentrated LDPC codes do not sacrifice on the incorrect coding proof size

Conclusion and Ongoing Work

Summary:

• We provided a specialized code construction technique to concentrate stopping sets in LDPC codes

Conclusion and Ongoing Work

Summary:

- We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
- Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches

Conclusion and Ongoing Work

Summary:

- We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
- Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches
- Ongoing work:
 - Improving security against stronger adversaries that can selectively pick a stopping set that has a lower probability of being sampled to hide

References

- (Al-Bassam '18) M. Al-Bassam, et al., "Fraud and Data Availability Proofs: Maximising Light Client Security and Scaling Blockchains with Dishonest Majorities," arXiv preprint arXiv:1809.09044, 2018.
- (Yu '19) M. Yu, et al., "Coded Merkle Tree: Solving Data Availability Attacks in Blockchains," International Conference on Financial Cryptography and Data Security, Springer, Cham, 2020.
- (Xiao '05) X.Y. Hu, et al., "Regular and irregular progressive edge-growth tanner graphs," IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.
- (Tian '03) T. Tian, et al., "Construction of irregular LDPC codes with low error floors," IEEE International Conference on Communications, May 2003.