Concentrated Stopping Set Design for

 Coded Merkle Tree: Improving Security Against Data Availability Attacks in Blockchain SystemsDebarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering University of California, Los Angeles

ITW 2020

Blockchain

(2) litecoin

- Distributed Ledger
- Decentralized trust platforms
- Application:
- Finance and currency
- Healthcare services
- Supply chain management
- Industrial IoT
- e-voting

Central Problem: Prohibitive Storage Overhead

[^0]
Central Problem: Prohibitive Storage Overhead

[^1]
Central Problem: Prohibitive Storage Overhead

Significant storage overhead

[^2]
Central Problem: Prohibitive Storage Overhead

- Ledger maintained by a network of nodes
- Each node maintains a local copy of the ledger

- Bitcoin ledger size $\sim 350 \mathrm{~GB}^{1}$

Significant storage overhead \downarrow Ethereum ledger size $\sim 600 \mathrm{~GB}^{1}$
${ }^{1}$ As of $3 / 12 / 2021$, https://bitinfocharts.com/

Central Problem: Prohibitive Storage Overhead

$\square \cdot \square \cdot \square$

$\square \cdot \square \cdot \square$

- Ledger maintained by a network of nodes
- Each node maintains a local copy of the ledger
- Prohibitive for resource limited nodes
- Bitcoin ledger size $\sim 350 \mathrm{~GB}^{1}$
- Ethereum ledger size $\sim 600 \mathrm{~GB}^{1}$

Allowing Light Nodes

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [AI-Bassam '18], [Yu '19]

Adversary creates an invalid block

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [AI-Bassam '18], [Yu '19]

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

- Adversary: Provides block to Full node but hides invalid portion

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof
- Light Nodes: No fraud proof

Data Availability(DA) Attack

Systems with light nodes and a dishonest majority of full nodes are vulnerable to DA attacks [Al-Bassam '18], [Yu '19]

Adversary creates an invalid block

- Adversary: Provides block to Full node but hides invalid portion Provides header to Light node
- Honest Nodes: Cannot verify missing transactions \rightarrow No fraud proof
- Light Nodes: No fraud proof \rightarrow accept the header.

Ensuring Data Availability

Ensuring Data Availability

"Is the Block Available?"

Ensuring Data Availability

- Anonymously request/sample few random chunks of the block

Ensuring Data Availability

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Ensuring Data Availability

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Ensuring Data Availability

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Ensuring Data Availability

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Ensuring Data Availability

"Is the Block Available?"

Probability of failure using 2 random samples:

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Ensuring Data Availability

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

$$
\begin{aligned}
& \text { Probability of failure } \\
& \text { using } 2 \text { random samples: } \\
& \left(1-\frac{1}{16}\right)\left(1-\frac{1}{15}\right)=0.87
\end{aligned}
$$

Ensuring Data Availability

"Is the Block Available?"
No coding:

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Erasure coding:

Ensuring Data Availability

"Is the Block Available?"
No coding:

- Anonymously request/sample few random chunks of the block
- Adversary can hide a small portion

Erasure coding:

Ensuring Data Availability

"Is the Block Available?"
No coding:

Erasure coding:

$$
\begin{aligned}
& \text { Probability of failure } \\
& \text { using } 2 \text { random samples: } \\
& \left(1-\frac{17}{32}\right)\left(1-\frac{17}{31}\right)=0.21
\end{aligned}
$$

Choice of Code Matters

Choice of Code Matters

- Incorrect coding attack:

Choice of Code Matters

- Incorrect coding attack:
- Adversary sends incorrectly coded block to Full Nodes

Choice of Code Matters

- Incorrect coding attack:
- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: \mathcal{O} (sparsity of parity check equations)

Choice of Code Matters

- Incorrect coding attack:
- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: \mathcal{O} (sparsity of parity check equations)
- MDS codes: proof size $=\mathcal{O}$ (block size)

Choice of Code Matters

- Incorrect coding attack:
- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: \mathcal{O} (sparsity of parity check equations)
- MDS codes: proof size $=\mathcal{O}$ (block size)
- Decoding complexity

Choice of Code Matters

- Incorrect coding attack:
- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: \mathcal{O} (sparsity of parity check equations)
- MDS codes: proof size $=\mathcal{O}$ (block size)
- Decoding complexity
- Undecodable ratio α

Choice of Code Matters

- Incorrect coding attack:
- Adversary sends incorrectly coded block to Full Nodes
- Honest Full nodes can detect and send incorrect coding proof
- Incorrect coding proof size: \mathcal{O} (sparsity of parity check equations)
- MDS codes: proof size $=\mathcal{O}$ (block size)
- Decoding complexity
- Undecodable ratio α
- Probability of Light node failure using s random samples $=(1-\alpha)^{s}$

LDPC Codes: A Strong Contender

LPDC codes:

- Characterized by a sparse parity check matrix

LDPC Codes: A Strong Contender

LPDC codes:

- Characterized by a sparse parity check matrix
- Tanner Graph

circles: variable nodes (VNs) squares: check nodes (CNs)

LDPC Codes: A Strong Contender

LPDC codes:

- Characterized by a sparse parity check matrix
- Tanner Graph
circles: variable nodes (VNs) squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

LDPC Codes: A Strong Contender

LPDC codes:

- Characterized by a sparse parity check matrix
- Tanner Graph

> circles: variable nodes (VNs) squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

- Small incorrect coding proof size due to small check node degree

LDPC Codes: A Strong Contender

LPDC codes:

- Characterized by a sparse parity check matrix
- Tanner Graph

> circles: variable nodes (VNs) squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

- Small incorrect coding proof size due to small check node degree
- Linear decoding in terms of the block size using peeling decoder

LDPC Codes: A Strong Contender

LPDC codes:

- Characterized by a sparse parity check matrix
- Tanner Graph

> circles: variable nodes (VNs) squares: check nodes (CNs)

LDPC codes have been shown to be suitable for this application [Yu' 19]

- Small incorrect coding proof size due to small check node degree
- Linear decoding in terms of the block size using peeling decoder
- What about the undecodable ratio?

Challenge with LDPC Codes: Small Stopping Sets

- Substructure in the Tanner Graph

Challenge with LDPC Codes: Small Stopping Sets

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block \rightarrow No fraud proof

Challenge with LDPC Codes: Small Stopping Sets

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block \rightarrow No fraud proof

$$
\begin{aligned}
& \text { Probability of failure } \\
& \text { using } 2 \text { random samples: } \\
& \left(1-\frac{3}{32}\right)\left(1-\frac{3}{31}\right)=0.81
\end{aligned}
$$

Challenge with LDPC Codes: Small Stopping Sets

- Substructure in the Tanner Graph
- If hidden, prevents peeling decoder from decoding the block \rightarrow No fraud proof

$$
\begin{aligned}
& \text { Probability of failure } \\
& \text { using } 2 \text { random samples: } \\
& \left(1-\frac{3}{32}\right)\left(1-\frac{3}{31}\right)=0.81
\end{aligned}
$$

Our work: Design of specialized LDPC codes with a coupled sampling strategy to achieve a significantly lower probability of failure.

Motivation: Not all VNs are equal

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Motivation: Not all VNs are equal

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Lemma
Of all stopping sets (SSs) of size μ, when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L}, then

Motivation: Not all VNs are equal

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Lemma
Of all stopping sets (SSs) of size μ, when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L}, then

$$
\text { Probability of failure }=1 \quad-\begin{gathered}
\text { fraction of } S S s \\
\text { of size } \mu \text { touched by } \mathcal{L}
\end{gathered}
$$

Motivation: Not all VNs are equal

In this work, we considered an adversary which randomly hides a stopping set of a particular size.

Lemma
Of all stopping sets (SSs) of size μ, when an adversary randomly hides one of them, and light nodes sample all VNs in the set \mathcal{L}, then

$$
\text { Probability of failure }=1-\begin{gathered}
\text { fraction of } S S_{s} \\
\text { of size } \mu \text { touched by } \mathcal{L}
\end{gathered}
$$

- Selecting a set \mathcal{L} of VNs which touches large no. of SSs
\rightarrow Prob. of failure \downarrow

Concentrated Stopping Set Design

Code Design Idea:

- Concentrate stopping sets to a small section of VNs

Concentrated Stopping Set Design

Code Design Idea:

- Concentrate stopping sets to a small section of VNs

Concentrated Stopping Set Design

Code Design Idea:

- Concentrate stopping sets to a small section of VNs
- Greedily Sample this small section of VNs

How to Concentrate Stopping Sets?

- When there are no degree 1 VNs , stopping sets are either cycles or interconnection of cycles [Tian '03]

How to Concentrate Stopping Sets?

- When there are no degree 1 VNs , stopping sets are either cycles or interconnection of cycles [Tian '03]
- Concentrating cycles \Longrightarrow Concentrating stopping sets

How to Concentrate Stopping Sets?

- When there are no degree 1 VNs , stopping sets are either cycles or interconnection of cycles [Tian '03]
- Concentrating cycles \Longrightarrow Concentrating stopping sets
- How to design codes with concentrated cycles?

How to Concentrate Stopping Sets?

- When there are no degree 1 VNs , stopping sets are either cycles or interconnection of cycles [Tian '03]
- Concentrating cycles \Longrightarrow Concentrating stopping sets
- How to design codes with concentrated cycles?

We do so by modifying the well-known Progressive Edge Growth (PEG) algorithm

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion If $\exists \mathrm{CNs}$ not connected to v_{j}

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion If $\exists \mathrm{CNs}$ not connected to v_{j}

- Select a CN with min degree not connected to v_{j}

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion If $\exists \mathrm{CNs}$ not connected to v_{j}

- Select a CN with min degree not connected to v_{j}
Else

All CNs exhausted

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion If $\exists \mathrm{CNs}$ not connected to v_{j}

- Select a CN with min degree not connected to v_{j}
Else
- Find CNs most distant to v_{j}
- Select one with minimum degree

All CNs exhausted

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion If $\exists \mathrm{CNs}$ not connected to v_{j}

- Select a CN with min degree not connected to v_{j}
Else
- Find CNs most distant to v_{j}
- Select one with minimum degree New cycles created

All CNs exhausted

PEG Algorithm

- Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_{j}
Expand Tanner Graph in a BFS fashion If $\exists \mathrm{CNs}$ not connected to v_{j}

- Select a CN with min degree not connected to v_{j}
Else
- Find CNs most distant to v_{j}
- Select one with minimum degree New cycles created
All CNs exhausted

We modify the CN selection criteria in green to concentrate cycles

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

High Entropy

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

We want the cycle distributions to be concentrated

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

High Entropy

We want the cycle distributions to be concentrated
\rightarrow Select CNs such that the entropy of the cycle distribution is minimized

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

High Entropy

Low Entropy

EC (Entropy Constrained)-PEG Algorithm For each $\mathrm{VN} v_{j}$
Expand Tanner Graph in a BFS fashion
If $\exists \mathrm{CNs}$ not connected to v_{j}
- select a CN with min degree not
connected to v_{j}

Else New cycles created

We want the cycle distributions to be concentrated \rightarrow Select CNs such that the entropy of the cycle distribution is minimized

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

High Entropy

Low Entropy

EC (Entropy Constrained)-PEG Algorithm For each $\mathrm{VN} v_{j}$

Expand Tanner Graph in a BFS fashion

If $\exists \mathrm{CNs}$ not connected to v_{j}

- select a CN with min degree not connected to v_{j}
Else New cycles created
- Find CNs most distant to v_{j}

We want the cycle distributions to be concentrated \rightarrow Select CNs such that the entropy of the cycle distribution is minimized

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

High Entropy

Low Entropy

EC (Entropy Constrained)-PEG Algorithm For each $\mathrm{VN} v_{j}$

```
Expand Tanner Graph in a BFS fashion
If }\exists\textrm{CNs}\mathrm{ not connected to }\mp@subsup{v}{j}{
    - select a CN with min degree not connected to \(v_{j}\)
```

Else New cycles created

- Find CNs most distant to v_{j}
- Select CN that results in minimum entropy of resultant cycle distribution

We want the cycle distributions to be concentrated
\rightarrow Select CNs such that the entropy of the cycle distribution is minimized

Using Entropy to Concentrate Cycles

For distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, Entropy $\mathcal{H}(p)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}$

- Uniform distributions have high entropy
- Concentrated distributions have low entropy

High Entropy

Low Entropy

EC (Entropy Constrained)-PEG Algorithm For each VN v_{j}

```
Expand Tanner Graph in a BFS fashion
If }\exists\textrm{CNs}\mathrm{ not connected to }\mp@subsup{v}{j}{
    - select a CN with min degree not connected to \(v_{j}\)
```

Else New cycles created

- Find CNs most distant to v_{j}
- Select CN that results in minimum entropy of resultant cycle distribution
- Update cycle distribution

We want the cycle distributions to be concentrated
\rightarrow Select CNs such that the entropy of the cycle distribution is minimized

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that
v_{i} is a part of, $g=4,6,8$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

$$
\begin{aligned}
& \lambda_{1}^{6}=\lambda_{1}^{6}+1 \\
& \lambda_{2}^{6}=\lambda_{2}^{6}+1 \\
& \lambda_{6}^{6}=\lambda_{6}^{6}+1
\end{aligned}
$$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

$$
\begin{aligned}
& \lambda_{1}^{6}=\lambda_{1}^{6}+1 \\
& \lambda_{2}^{6}=\lambda_{2}^{6}+1 \\
& \lambda_{7}^{6}=\lambda_{7}^{6}+1
\end{aligned}
$$

EC-PEG Algorithm

- Whenever a new edge, that creates cycles, is added to the Tanner Graph, we update the cycle counts of each VN

VNs $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

- $\lambda_{i}^{g}:=$ No. of cycles of length g that v_{i} is a part of, $g=4,6,8$

$$
\begin{aligned}
& \lambda_{1}^{6}=\lambda_{1}^{6}+1 \\
& \lambda_{3}^{6}=\lambda_{3}^{6}+1 \\
& \lambda_{6}^{6}=\lambda_{6}^{6}+1
\end{aligned}
$$

EC-PEG Algorithm: CN Selection Procedure

EC-PEG Algorithm: CN Selection Procedure

Candidate CNs: c_{8}, c_{9}, c_{10}

- For each CN candidate, calculate the resultant VN cycle counts

EC-PEG Algorithm: CN Selection Procedure

Candidate CNs: c_{8}, c_{9}, c_{10}

- For each CN candidate, calculate the resultant VN cycle counts
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$

EC-PEG Algorithm: CN Selection Procedure

Candidate CNs: c_{8}, c_{9}, c_{10}

- For each CN candidate, calculate the resultant VN cycle counts
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$

EC-PEG Algorithm: CN Selection Procedure

Candidate CNs: c_{8}, c_{9}, c_{10}

- For each CN candidate, calculate the resultant VN cycle counts
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$

EC-PEG algorithm: CN selection Procedure

EC-PEG algorithm: CN selection Procedure

$\underbrace{\left(\lambda_{1}^{g}, \ldots, \lambda_{n}^{g}\right)}_{\text {cycle counts }}$

EC-PEG algorithm: CN selection Procedure

$\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$

- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
$>\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
$\underbrace{\left(\lambda_{1}^{g}, \ldots, \lambda_{n}^{g}\right)}_{\text {cycle counts }} \rightarrow \underbrace{\left(\frac{\lambda_{1}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}, \ldots, \frac{\lambda_{n}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}\right):=\alpha^{g}}_{\text {normalized counts }}$

EC-PEG algorithm: CN selection Procedure

$\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$

- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
$>\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
$\underbrace{\left(\lambda_{1}^{g}, \ldots, \lambda_{n}^{g}\right)}_{\text {cycle counts }} \rightarrow \underbrace{\left(\frac{\lambda_{1}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}, \ldots, \frac{\lambda_{n}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}\right):=\alpha^{g}}_{\text {normalized counts }} \rightarrow \underbrace{\mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)}_{\text {entropy of combined counts }}$

EC-PEG algorithm: CN selection Procedure

$\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right) \rightarrow \mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$

- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
$\underbrace{\left(\lambda_{1}^{g}, \ldots, \lambda_{n}^{g}\right)}_{\text {cycle counts }} \rightarrow \underbrace{\left(\frac{\lambda_{1}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}, \ldots, \frac{\lambda_{n}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}\right):=\alpha^{g}}_{\text {normalized counts }} \rightarrow \underbrace{\mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)}_{\text {entropy of combined counts }}$

EC-PEG algorithm: CN selection Procedure

$\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right) \rightarrow \mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$

- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right) \rightarrow \mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$
- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right)$
$\underbrace{\left(\lambda_{1}^{g}, \ldots, \lambda_{n}^{g}\right)}_{\text {cycle counts }} \rightarrow \underbrace{\left(\frac{\lambda_{1}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}, \ldots, \frac{\lambda_{n}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}\right):=\alpha^{g}}_{\text {normalized counts }} \rightarrow \underbrace{\mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)}_{\text {entropy of combined counts }}$

EC-PEG algorithm: CN selection Procedure

$\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right) \rightarrow \mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$

- $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right) \rightarrow \mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$
> $\left(\lambda_{1}^{4}, \ldots, \lambda_{n}^{4}\right),\left(\lambda_{1}^{6}, \ldots, \lambda_{n}^{6}\right),\left(\lambda_{1}^{8}, \ldots, \lambda_{n}^{8}\right) \rightarrow \mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$
$\underbrace{\left(\lambda_{1}^{g}, \ldots, \lambda_{n}^{g}\right)}_{\text {cycle counts }} \rightarrow \underbrace{\left(\frac{\lambda_{1}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}, \ldots, \frac{\lambda_{n}^{g}}{\sum_{i=1}^{n} \lambda_{i}^{g}}\right):=\alpha^{g}}_{\text {normalized counts }} \rightarrow \underbrace{\mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)}_{\text {entropy of combined counts }}$

EC-PEG algorithm: CN selection Procedure

CN selection procedure:

EC-PEG algorithm: CN selection Procedure

CN selection procedure:
Select CN that results in minimum $\mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$

EC-PEG algorithm: CN selection Procedure

CN selection procedure:
Select CN that results in minimum $\mathcal{H}\left(\frac{\alpha^{4}+\alpha^{6}+\alpha^{8}}{3}\right)$
Note:

- Minimizing the entropy of joint cycle counts ensures that all cycle distributions are concentrated towards the same set of VNs

Sampling Strategy

- Our sampling strategy greedily samples VNs that are part of a large number of cycles

$g=$ smallest cycle length in Tanner Graph \mathcal{G} While sample set size $<s$
- $v=\mathrm{VN}$ that is part of largest no. of cycles of length g in \mathcal{G}
- sample set $=$ sample set $\cup v$
- remove v and all incident edges from \mathcal{G}

Sampling Strategy

- Our sampling strategy greedily samples VNs that are part of a large number of cycles

$g=$ smallest cycle length in Tanner Graph \mathcal{G} While sample set size $<s$
- $v=\mathrm{VN}$ that is part of largest no. of cycles of length g in \mathcal{G}
- sample set $=$ sample set $\cup v$
- remove v and all incident edges from \mathcal{G} If \nexists cycles of length g in \mathcal{G}
- $g=g+2$

Simulation Results

- Code parameters: Code length $=100$, VN degree $=4$, Rate $=\frac{1}{2}$, girth $=6$.

Simulation Results

- Code parameters: Code length $=100, \mathrm{VN}$ degree $=4$, Rate $=\frac{1}{2}$, girth $=6$.

- VN indices arranged in decreasing order of cycle 6 fractions

Simulation Results

- Code parameters: Code length $=100$, VN degree $=4$, Rate $=\frac{1}{2}$, girth $=6$.

- VN indices arranged in decreasing order of cycle 6 fractions
- Cycle 6 and cycle 8 concentrated towards same set of VNs

Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs

Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs
SSs of size 11

- VN indices arranged in decreasing order of cycle 6 fractions

Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs

SSs of size 11

SSs of size 12

- VN indices arranged in decreasing order of cycle 6 fractions

Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs

SSs of size 11

SSs of size 12

- VN indices arranged in decreasing order of cycle 6 fractions
- SSs are concentrated towards the same set of VNs as the cycles

Simulation Results

Probability of failure for a stopping set of size μ

Simulation Results

Probability of failure for a stopping set of size μ
RS: Random Sampling

Simulation Results

Probability of failure for a stopping set of size μ
RS: Random Sampling

Simulation Results

Probability of failure for a stopping set of size μ
RS: Random Sampling
GS: Greedy Sampling

Simulation Results

Probability of failure for a stopping set of size μ
RS: Random Sampling
GS: Greedy Sampling

Simulation Results

Probability of failure for a stopping set of size μ

RS: Random Sampling
GS: Greedy Sampling

- Concentrated LDPC codes with Greedy sampling improve the probability of failure

Incorrect Coding Proof Size

- Depends on the maximum check node degree

Rate	Code length	VN degree	Ensemble [Yu '19]	PEG	EC-PEG
$\frac{1}{2}$	100	4	16	9	11
	200	4	16	9	15
	100	4	8	7	10
$\frac{1}{4}$	200	4	8	6	9

Table: Maximum CN degree for different codes.

Incorrect Coding Proof Size

- Depends on the maximum check node degree

Rate	Code length	VN degree	Ensemble [Yu '19]	PEG	EC-PEG
$\frac{1}{2}$	100	4	16	9	11
	200	4	16	9	15
$\frac{1}{4}$	100	4	8	7	10
	200	4	8	6	9

Table: Maximum CN degree for different codes.

- Concentrated LDPC codes do not sacrifice on the incorrect coding proof size

Conclusion and Ongoing Work

- Summary:
- We provided a specialized code construction technique to concentrate stopping sets in LDPC codes

Conclusion and Ongoing Work

- Summary:
- We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
- Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches

Conclusion and Ongoing Work

- Summary:
- We provided a specialized code construction technique to concentrate stopping sets in LDPC codes
- Coupled with a greedy sampling strategy, concentrated LDPC codes reduce the probability of light node failure compared to earlier approaches
- Ongoing work:
- Improving security against stronger adversaries that can selectively pick a stopping set that has a lower probability of being sampled to hide

References

- (Al-Bassam '18) M. Al-Bassam, et al., "Fraud and Data Availability Proofs: Maximising Light Client Security and Scaling Blockchains with Dishonest Majorities," arXiv preprint arXiv:1809.09044, 2018.
- (Yu '19) M. Yu, et al., "Coded Merkle Tree: Solving Data Availability Attacks in Blockchains," International Conference on Financial Cryptography and Data Security, Springer, Cham, 2020.
- (Xiao '05) X.Y. Hu, et al., "Regular and irregular progressive edge-growth tanner graphs," IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.
- (Tian '03) T. Tian, et al., "Construction of irregular LDPC codes with low error floors," IEEE International Conference on Communications, May 2003.

[^0]: ${ }^{1}$ As of $3 / 12 / 2021$, https://bitinfocharts.com/

[^1]: ${ }^{1}$ As of $3 / 12 / 2021$, https://bitinfocharts.com/

[^2]: ${ }^{1}$ As of $3 / 12 / 2021$, https://bitinfocharts.com/

