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Blockchain

I Distributed Ledger

I Decentralized trust platforms
I Application:

• Finance and currency
• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting
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Central Problem: Prohibitive Storage Overhead

I Ledger maintained by a
network of nodes

I Each node maintains a local
copy of the ledger

I Prohibitive for resource
limited nodes

Significant storage overhead

I Bitcoin ledger size ∼ 350GB1

I Ethereum ledger size ∼ 600GB1

1As of 3/12/2021, https://bitinfocharts.com/
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Allowing Light Nodes

Light Nodes:

I Only store block headers
(total size ∼ 1GB for Ethereum)

I Can verify transaction inclusion in a
block

I Cannot verify transaction
correctness

→ Rely on honest Full
nodes for fraud notification
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Data Availability(DA) Attack
Systems with light nodes and a dishonest majority of full nodes are
vulnerable to DA attacks [Al-Bassam ’18], [Yu ’19]

Adversary creates an invalid block

I Adversary: Provides block to Full node but hides invalid portion

Provides header to Light node

I Honest Nodes: Cannot verify missing transactions

→ No fraud proof

I Light Nodes: No fraud proof

→ accept the header.
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Ensuring Data Availability

I Anonymously request/sample few
random chunks of the block

I Adversary can hide a small portion

No coding: Probability of failure
using 2 random samples:

(
1− 1

16

) (
1− 1

15

)
= 0.87

Erasure coding:
Probability of failure
using 2 random samples:

(
1− 17

32

) (
1− 17

31

)
= 0.21
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Choice of Code Matters

I Incorrect coding attack:

• Adversary sends incorrectly coded block to Full Nodes
• Honest Full nodes can detect and send incorrect coding proof
• Incorrect coding proof size: O(sparsity of parity check equations)
• MDS codes: proof size = O(block size)

I Decoding complexity
I Undecodable ratio α

• Probability of Light node failure using s random samples = (1− α)s
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LDPC Codes: A Strong Contender

LPDC codes:

I Characterized by a sparse parity check matrix

I Tanner Graph

LDPC codes have been shown to be suitable for this application [Yu’ 19]

I Small incorrect coding proof size due to small check node degree

I Linear decoding in terms of the block size using peeling decoder

• What about the undecodable ratio?
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Challenge with LDPC Codes: Small Stopping Sets

I Substructure in the Tanner Graph

I If hidden, prevents peeling decoder from
decoding the block

→ No fraud proof

Probability of failure
using 2 random samples:(
1− 3

32

)(
1− 3

31

)
= 0.81

Our work: Design of specialized LDPC codes with a coupled sampling

strategy to achieve a significantly lower probability of failure.
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Motivation: Not all VNs are equal

In this work, we considered an adversary which randomly hides a stopping
set of a particular size.

Lemma
Of all stopping sets (SSs) of size µ, when an adversary randomly hides one
of them, and light nodes sample all VNs in the set L, then

Probability of failure = 1 − fraction of SSs
of size µ touched by L

I Selecting a set L of VNs which touches large no. of SSs

→ Prob. of failure ↓
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Concentrated Stopping Set Design

Code Design Idea:

I Concentrate stopping sets to a small
section of VNs

I Greedily Sample this small section of VNs

SS distribution
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How to Concentrate Stopping Sets?

I When there are no degree 1 VNs, stopping sets are either cycles or
interconnection of cycles [Tian ’03]

I Concentrating cycles =⇒ Concentrating stopping sets

• How to design codes with concentrated cycles?

We do so by modifying the well-known Progressive Edge Growth
(PEG) algorithm
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PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not
connected to vj

Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to concentrate cycles
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Using Entropy to Concentrate Cycles
For distribution p = (p1, p2, . . . , pn), Entropy H(p) =

∑n
i=1 pi log

1
pi

I Uniform distributions have high entropy

I Concentrated distributions have low entropy

High Entropy Low Entropy

EC (Entropy Constrained)-PEG Algorithm
For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• select a CN with min degree not
connected to vj

Else New cycles created
• Find CNs most distant to vj
• Select CN that results in minimum
entropy of resultant cycle distribution
• Update cycle distribution

We want the cycle distributions to be concentrated
→ Select CNs such that the entropy of the cycle distribution is minimized
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EC-PEG Algorithm

I Whenever a new edge, that creates cycles, is added to the Tanner
Graph, we update the cycle counts of each VN

VNs (v1, v2, . . . , vn)

I λgi := No. of cycles of length g that
vi is a part of, g = 4, 6, 8

I
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EC-PEG Algorithm: CN Selection Procedure

Candidate CNs : c8, c9, c10

I For each CN candidate, calculate the
resultant VN cycle counts
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CN selection procedure:

Select CN that results in minimum H(α4+α6+α8

3 )
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Sampling Strategy

I Our sampling strategy greedily samples VNs that are part of a large
number of cycles

g = smallest cycle length in Tanner Graph G
While sample set size < s
• v = VN that is part of largest no. of
cycles of length g in G
• sample set = sample set ∪ v
• remove v and all incident edges from G

If @ cycles of length g in G
• g = g + 2
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Simulation Results
I Code parameters: Code length = 100, VN degree = 4, Rate = 1

2 ,
girth = 6.

VN index
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I VN indices arranged in decreasing order of cycle 6 fractions

I Cycle 6 and cycle 8 concentrated towards same set of VNs
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Simulation Results

Fraction of SSs of size 11, 12 touched by different VNs
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Simulation Results
Probability of failure for a stopping set of size µ

RS: Random Sampling
GS: Greedy Sampling

I Concentrated LDPC codes with Greedy sampling improve the
probability of failure
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Incorrect Coding Proof Size

I Depends on the maximum check node degree

Rate Code length VN degree Ensemble [Yu ’19] PEG EC-PEG

1
2

100 4 16 9 11
200 4 16 9 15

1
4

100 4 8 7 10
200 4 8 6 9

Table: Maximum CN degree for different codes.

I Concentrated LDPC codes do not sacrifice on the incorrect coding
proof size
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Conclusion and Ongoing Work

I Summary:

• We provided a specialized code construction technique to concentrate
stopping sets in LDPC codes

• Coupled with a greedy sampling strategy, concentrated LDPC codes
reduce the probability of light node failure compared to earlier
approaches

I Ongoing work:

• Improving security against stronger adversaries that can selectively pick
a stopping set that has a lower probability of being sampled to hide
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