Communication-Efficient LDPC Code Design for Data Availability Oracle in Side Blockchains

Debarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering University of California, Los Angeles

ITW 2021

Blockchain systems suffer from low transaction throughput

- Blockchain systems suffer from low transaction throughput
- ▶ To improve the transaction throughput, they run Side Blockchains

Side Blockchain:-

Smaller blockchain systems

- Blockchain systems suffer from low transaction throughput
- To improve the transaction throughput, they run Side Blockchains

Side Blockchain:-

Smaller blockchain systems

Side Blockchain nodes:

 Push hash commitment of their block to the trusted blockchain

- Blockchain systems suffer from low transaction throughput
- To improve the transaction throughput, they run Side Blockchains

Side Blockchain:-

Smaller blockchain systems

Side Blockchain nodes:

 Push hash commitment of their block to the trusted blockchain

Trusted Blockchain:

- Only store the hash of the side blockchain
- Side blockchains make commitments in parallel

- Blockchain systems suffer from low transaction throughput
- ▶ To improve the transaction throughput, they run Side Blockchains

Side Blockchain:-

Smaller blockchain systems

Side Blockchain nodes:

 Push hash commitment of their block to the trusted blockchain

Trusted Blockchain:

- Only store the hash of the side blockchain
- Side blockchains make commitments in parallel

Issue: Side Blockchains with a majority of dishonest nodes are vulnerable to data availability attacks [Sheng '20]

Data Availability (DA) Attack in Side Blockchains

Adversary creates an invalid block

Data Availability (DA) Attack in Side Blockchains

Adversarial Side Blockchain node:

Pushes hash commitment to the trusted blockchain

Data Availability (DA) Attack in Side Blockchains

Adversarial Side Blockchain node:

- Pushes hash commitment to the trusted blockchain
- Full block not available to other side blockchain nodes

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

 Collectively and efficiently store chunks of the Tx block (to guarantee availability)

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

- Collectively and efficiently store chunks of the Tx block (to guarantee availability)
- Push the Tx block's hash commitment iff the block is available

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

- Collectively and efficiently store chunks of the Tx block (to guarantee availability)
- Push the Tx block's hash commitment iff the block is available
- Oracle nodes can be malicious (honest majority)

An oracle layer was introduced to ensure data availability [Sheng '20]

Transaction block: chunked and coded

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

- Transaction block: chunked and coded
- Coded chunks dispersed among N oracle nodes

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

- Transaction block: chunked and coded
- Coded chunks dispersed among N oracle nodes
- To improve storage efficiency, LDPC codes are used

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

- Transaction block: chunked and coded
- Coded chunks dispersed among N oracle nodes
- To improve storage efficiency, LDPC codes are used Issues with LDPC codes: small stopping sets (SS)

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

- Transaction block: chunked and coded
- Coded chunks dispersed among N oracle nodes
- To improve storage efficiency, LDPC codes are used Issues with LDPC codes: small stopping sets (SS)

If VNs corresponding to a small stopping set are hidden from the oracle nodes, original block cannot be decoded back by a peeling decoder

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol LDPC Codes Tx block (Side Blockchain

Trusted Blockchain

Dispersal Protocol

Rule about which oracle node stores which coded chunks

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

- Rule about which oracle node stores which coded chunks
- Sufficient coded chunks sent to each oracle node such that SS failure cannot occur

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol LDPC Codes Tx block (Side Blockchain

Trusted Blockchain

- Rule about which oracle node stores which coded chunks
- Sufficient coded chunks sent to each oracle node such that SS failure cannot occur
- $M_{\min} \downarrow$

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol LDPC Codes Tx block (Side Blockchain

Trusted Blockchain

- Rule about which oracle node stores which coded chunks
- Sufficient coded chunks sent to each oracle node such that SS failure cannot occur
- $M_{\min} \downarrow \Longrightarrow$ send more chunks to oracle nodes \Longrightarrow communication cost \uparrow

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol LDPC Codes Tx block (Side Blockchain

Trusted Blockchain

- Rule about which oracle node stores which coded chunks
- Sufficient coded chunks sent to each oracle node such that SS failure cannot occur
- $M_{\min} \downarrow \Longrightarrow$ send more chunks to oracle nodes \Longrightarrow communication cost \uparrow
- Known hard problem to design LDPC codes with large $M_{\rm min}$ [Jiao '09], [He '11].

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol LDPC Codes Tx block (Side Blockchain

Trusted Blockchain

- Rule about which oracle node stores which coded chunks
- Sufficient coded chunks sent to each oracle node such that SS failure cannot occur
- $M_{\min} \downarrow \Longrightarrow$ send more chunks to oracle nodes \Longrightarrow communication cost \uparrow
- Known hard problem to design LDPC codes with large $M_{\rm min}$ [Jiao '09], [He '11].

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

Dispersal Protocol

- Rule about which oracle node stores which coded chunks
- Sufficient coded chunks sent to each oracle node such that SS failure cannot occur
- $M_{\min} \downarrow \Longrightarrow$ send more chunks to oracle nodes \Longrightarrow communication cost \uparrow
- Known hard problem to design LDPC codes with large $M_{\rm min}$ [Jiao '09], [He '11].

Our work: Co-design of LDPC codes and a tailored dispersal protocol to significantly lower the communication cost.

Our dispersal strategy is a two step protocol

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - $\mathcal{S} = \mathsf{all} \; \mathsf{SSs} \; \mathsf{of} \; \mathsf{size} < \mu \; \mathsf{(small stopping sets)}$
 - Coded chunks are dispersed such that the small SS failures cannot occur

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - S =all SSs of size $< \mu$ (small stopping sets)
 - Coded chunks are dispersed such that the small SS failures cannot occur

2. Valid Phase

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - S =all SSs of size $< \mu$ (small stopping sets)
 - Coded chunks are dispersed such that the small SS failures cannot occur
 - \blacktriangleright \mathcal{V} : set of VNs that *cover* all SSs in \mathcal{S}

2. Valid Phase

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - S =all SSs of size $< \mu$ (small stopping sets)
 - Coded chunks are dispersed such that the small SS failures cannot occur
 - V: set of VNs that cover all SSs in S found greedily: Greedy-Set(S)

2. Valid Phase

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - $\mathcal{S} = \mathsf{all} \mathsf{SSs} \mathsf{ of size} < \mu \text{ (small stopping sets)}$
 - Coded chunks are dispersed such that the small SS failures cannot occur
 - V: set of VNs that cover all SSs in S found greedily: Greedy-Set(S)
 - Each VN in V sent to sufficient nodes such that small SS failures cannot occur

2. Valid Phase

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - $\mathcal{S} = \mathsf{all} \mathsf{SSs} \mathsf{ of size} < \mu \text{ (small stopping sets)}$
 - Coded chunks are dispersed such that the small SS failures cannot occur
 - V: set of VNs that cover all SSs in S found greedily: Greedy-Set(S)
 - Each VN in V sent to sufficient nodes such that small SS failures cannot occur
 - Communication cost $\propto |Greedy-Set(S)|$

2. Valid Phase

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - $\mathcal{S} = \mathsf{all} \; \mathsf{SSs} \; \mathsf{of} \; \mathsf{size} < \mu \; \mathsf{(small stopping sets)}$
 - Coded chunks are dispersed such that the small SS failures cannot occur
 - V: set of VNs that cover all SSs in S found greedily: Greedy-Set(S)
 - Each VN in V sent to sufficient nodes such that small SS failures cannot occur
 - Communication cost $\propto |Greedy-Set(S)|$

2. Valid Phase

► Coded chunks are dispersed such that large (size ≥ µ) SS failures cannot occur

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

Our dispersal strategy is a two step protocol

- 1. Secure Phase
 - $\mathcal{S} = \mathsf{all} \mathsf{SSs} \mathsf{ of size} < \mu \text{ (small stopping sets)}$
 - Coded chunks are dispersed such that the small SS failures cannot occur
 - V: set of VNs that cover all SSs in S found greedily: Greedy-Set(S)
 - Each VN in V sent to sufficient nodes such that small SS failures cannot occur
 - Communication cost $\propto |Greedy-Set(S)|$

Coded chunks are dispersed such that large (size ≥ µ) SS failures cannot occur

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm [Xiao '05]

SSs are made up of cycles [Tian '03]

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

DE-PEG Algorithm For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j • Select a CN with min degree not connected to v_j Else (new cycles created) • Find CNs most distant to v_j • Select CNs with minimum degree

- SSs are made up of cycles [Tian '03]
- ► Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

Communication Cost achieved by different coding schemes and dispersal strategies

Co-design of the DE-PEG algorithm and the proposed dispersal protocol reduce the communication cost

References

- (Sheng '20) P. Sheng, et al., "ACeD: Scalable Data Availability Oracle" arXiv preprint arXiv:2011.00102, Oct. 2020.
- (Xiao '05) X.Y. Hu, et al., "Regular and irregular progressive edge-growth tanner graphs," IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.
- (Tian '03) T. Tian, et al., "Construction of irregular LDPC codes with low error floors," IEEE International Conference on Communications, May 2003.
- (Jiao '09) X. Jiao, et al. "Eliminating small stopping sets in irregular low-density parity-check codes," IEEE Communications Letters, vol. 13, no. 6, Jun. 2009.
- (He '11) Y. He, et al. "A survey of error floor of LDPC codes," International ICST Conference on Communications and Networking in China (CHINACOM), Aug. 2011.