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Blockchain

I Distributed Ledger

I Decentralized trust platforms
I Application:

• Finance and currency
• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting
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Central Problem: Poor Throughput and Latency

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com
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Data Availability (DA) Attack in Side Blockchains
Adversary creates an invalid block

Note: DA attack cannot occur when
side blockchains have a majority of
honest nodes → majority vote on
“ is something missing?”

Adversarial Side Blockchain node:
I Pushes hash commitment to the trusted blockchain

I Full block not available to other side blockchain nodes

I The invalid block becomes part of the transaction ordering in the
trusted blockchain
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Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]
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Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal
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Design Objective: Minimize Communication Cost

I Communication cost:

amount of data
communicated to oracle nodes during dispersal�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑
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I Communication cost: amount of data
communicated to oracle nodes during dispersal�

Affected by the co-design of Dispersal protocol
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Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Our work: Design of specialized LDPC codes and a tailored dispersal

protocol to significantly lower the communication cost.
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Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase
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Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S

→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed
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Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[ (
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth
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Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm
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PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|
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Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|
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• Select a CN with min degree not

connected to vj
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Make L contain only low Extrinsic Message Degree (EMD) [Tian ’04] cycles
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Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased,

Cs increases. Cs for DE-PEG < Cs for PEG

,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG
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I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:

Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard
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Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol

• LDPC codes tailor made for these specific
channels demonstrate better performance�

k∗-secure dispersal protocol�

DE-PEG algorithm

I Ongoing work

• Considering other code families such as Polar codes for this application.
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