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Issue: Side Blockchains with a majority
vulnerable to data availability attacks [Sheng '20]
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» If VNs corresponding to a small stopping set are hidden
from the oracle nodes, original block cannot be decoded
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receive

y+ f fraction votes

»  Mmin := minimum stopping set size of the LDPC code
of block length M

;IE ! P fraction ) .
‘Ilﬂ/' e ma“zions » Every v fraction of nodes should receive at least
nodes
kzmﬁv A== M — Min + 1 coded chunks

: Dispersal Protocol : 3 L.
| | e [3:= fraction of malicious oracle nodes
| | . .
| | LDPC Codes I If more than v 4 3 fraction of nodes vote that the block is
| | . . .

available, then the hash commitment is pushed.
| Tx block I P

o8 L‘E'é_! g | The oracle guarantees block availability
Side Blockchain Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5/18



Design Objective: Minimize Communication Cost
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Design Objective: Minimize Communication Cost

. . ‘ Trusted Blockchain ‘
» Communication cost: amount of data
communicated to oracle nodes during dispersal |
L Affected by the co-design of Dispersal protocol 7+ B fraction votes
and LDPC code of -
Dispersal protocol in prior work [Sheng '20]: 8\ g .
o \ T [

> Every v fraction of oracle nodes receives | D Bt
1

> M — My, + 1 coded chunks Ty :
. e

designed randomly (sampling with replacement) 88224~~~ !
Moin I = send more chunks to oracle nodes”

= communication cost T ("] A;uﬁ (]
Side Blockchain

Our work: Design of specialized LDPC codes and a tailored dispersal

protocol to significantly lower the communication cost.
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Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < ) are
treated in an unified manner
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small SS failures cannot occur

2. Valid Phase

Mitra, Tauz, Dolecek (UCLA)

OF OF B B o6

N4

Secure
Dispersal
T
<u l > U

04 o014 , OO4O OIITm

OO Oo4d ' o117

LDPC Code
ITW 2021 7/18



Dispersal Protocol Design

Our dispersal strategy is a two step protocol OF OF BE B 8
1. Secure Phase \ / / S
All small stopping sets (SSs) (size < ) are Sigeie hald
. s Dispersal Dispersal
treated in an unified manner
» Coded chunks are dispersed in a <u >
communication-efficient way such that the | @ | oo oo
. OO0 o | OO
small SS failures cannot occur !
LDPC Code

2. Valid Phase
A refinement of the dispersal protocol used in
[Sheng '20] for larger SSs (size > p)
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Dispersal Protocol Design

Our dispersal strategy is a two step protocol OF OF BE B 8
1. Secure Phase \ / / S
All small stopping sets (SSs) (size < ) are Stoeuiie Velil
. s Dispersal Dispersal
treated in an unified manner
» Coded chunks are dispersed in a <u ! >u
communication-efficient way such that the | hom | oo oo
. OO oo ¢ oo
small SS failures cannot occur !
LDPC Code

2. Valid Phase
A refinement of the dispersal protocol used in
[Sheng '20] for larger SSs (size > p)
» Coded chunks are dispersed in a
communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:
Design LDPC codes that reduce communication cost of the secure phase
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Secure Phase

» Neigh(S) := set of oracle nodes having at least Secure
H Dispersal
one coded chunk of stopping set S S
» f := maximum number of malicious oracle nodes

*-'C'E
e

» S'is securely dispersed if |[Neigh(S)| > f +1

u
i

> If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
— Failure of stopping set S cannot occur
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» Neigh(S) := set of oracle nodes having at least Secure (
one coded chunk of stopping set S Dispersal - — &=
Smmm | g
» f := maximum number of malicious oracle nodes }!

» S'is securely dispersed if |[Neigh(S)| > f +1

> If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
— Failure of stopping set S cannot occur

> S = All SSs of size <
Secure phase: all SSs in S are securely dispersed

— . mEEO < p size SSs cannot cause block unavailability

HIL

- V: set of VNs that cover all SSs in S
SSs of size <y — found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f 4+ 1 nodes
— ensures all SSs in S are securely dispersed
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Valid Phase

Consider the following dispersal protocol

1-SS-Valid dispersal

Every « fraction of oracle nodes receives > M — u+ 1 coded chunks

» Each oracle node receives coded chunks corresponding to a uniformly chosen
k-element subset of all the k-element subsets of the M coded chunks

k

[mmn]
LDPC Code | — K =

. o
+ Dispersal /k—’ (7|

protocol o
\ !
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Valid Phase

Consider the following dispersal protocol

1-SS-Valid dispersal

Every « fraction of oracle nodes receives > M — u+ 1 coded chunks

» Each oracle node receives coded chunks corresponding to a uniformly chosen
k-element subset of all the k-element subsets of the M coded chunks

Lemma

Prob (dispersal is not y-SS-valid) < eNHe() Py (k, 1)

M—p

Pp(k,p) = Y (=)

=0

(

M
J

Bl

k

LDPC Code
+ Dispersal
protocol

== 8

masal
— 8

KIID_’!

L Coupon Collector’s problem with group drawings [Stadje '90]
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» Each oracle node receives coded chunks corresponding to a uniformly chosen
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L Coupon Collector’s problem with group drawings [Stadje '90]

» k*(u) := min k such that ¥ 7¢O Py(k, 1) < pin (some predefined failure

probability)
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Valid Phase

Consider the following dispersal protocol

1-SS-Valid dispersal

Every « fraction of oracle nodes receives > M — u+ 1 coded chunks

» Each oracle node receives coded chunks corresponding to a uniformly chosen
k-element subset of all the k-element subsets of the M coded chunks

Lemma

Prob (dispersal is not y-SS-valid) < eNHe() Py (k, 1)

Pk = 3 <—1>M—“—f<

=0

M
J

Bl

k()

LDPC Code
+ Dispersal
protocol

%) 08
[EEEN] H
k*mF’E

\g

L Coupon Collector’s problem with group drawings [Stadje '90]

» k*(u) := min k such that ¥ 7¢O Py(k, 1) < pin (some predefined failure

probability)

| Guarantees availability w.p. > 1—py, |
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Overall Dispersal Strategy and Code Design

k*-secure dispersal protocol
1. Secure Phase
All SSs of size < p are securely dispersed

2. Valid Phase
k*(p) valid dispersal protocol

Mitra, Tauz, Dolecek (UCLA)
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Overall Dispersal Strategy and Code Design

k*-secure dispersal protocol
1. Secure Phase
All SSs of size < p are securely dispersed

OF OF B B o6
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| < p size SSs cannot cause block unavailability |

- Recall: Each VN in Greedy-Set(S) is dispersed to Secure k*() Valid
f + 1 nodes Dispersal Dispersal
- Communication cost o (f + 1)|Greedy-Set(S)] .
<u ! =2 U
2. Valid Pha.se . co o O O
k*(p) valid dispersal protocol !
LDPC Code

Guarantees availability w.p. > 1 — py, for SSs
of size > p

Code Design Strategy:
Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm
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e Select a CN with min degree not
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[We modify the CN selection criteria in green to result in a low |Greedy-Set(S)| ]
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For each VN v;
Expand Tanner Graph in a BFS fashion
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> Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size <
» Design LDPC codes to reduce |Greedy-Set(L)|, £L = List of cycles of length < g
Vf DE-PEG Algorithm

For each VN v;
Expand Tanner Graph in a BFS fashion

d If 3 CNs not connected to v;
e Select a CN with min degree not
connected to v;
: Else (new cycles created)

e Find CNs most distant to v;
e Select CNs with minimum degree

e Select one with minimum |Greedy-Set(L)]

All CNs ext

Solution:

Make £ contain only low Extrinsic Message Degree (EMD) [Tian '04] cycles
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Simulation Results: Communication Cost Reduction

System Parameters: N = 9000, 8 = 0.49, M = 256, Block size = 1MB,
pen, = 1078, LDPC code rate = %, v =1—2p8. All communication costs are in GB.
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System Parameters: N = 9000, 8 = 0.49, M = 256, Block size = 1MB,
pen, = 1078, LDPC code rate = %, v =1—28. All communication costs are in GB.

> |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < i
» (C®: communication cost of secure phase of dispersal
> CV: communication cost of valid phase of dispersal (each node gets k* (1) chunks)

> C7: total communication cost = C” 4+ C° + A (small additional overhead)

Secure Phase Valid Phase
VI c® cv cT
" | PEG | DE-PEG PEG DE-PEG PEG DE-PEG
17 0 0 0 0 5.116 | 5.125 5.125
18 1 0 0.037 0 4.887 | 4.933 4.896
19 3 1 0.112 0.037 4.658 | 4.779 4.704
20 7 4 0.262 0.149 4.428 | 4.700 4.587
21 14 13 0.524 0.486 4.276 | 4.809 4771

» DE-PEG always results in lower |V| compared to PEG
» As u is increased, C® increases. C® for DE-PEG < C? for PEG, C” decreases.
» C7T is lowest for u = 20, lower for DE-PEG
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e Considering other code families such as Polar codes for this application.
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