Communication-Efficient LDPC Code Design for Data Availability Oracle in Side Blockchains

Debarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering University of California, Los Angeles

ITW 2021

Blockchain

- Distributed Ledger
- Decentralized trust platforms

Application:

- Finance and currency
- Healthcare services
- Supply chain management
- Industrial IoT
- e-voting

 Ledger of transaction blocks maintained by a network of nodes

 Ledger of transaction blocks maintained by a network of nodes

Metrics:

Transaction throughout: number of transactions processed in the system per second

 Ledger of transaction blocks maintained by a network of nodes

Metrics:

- Transaction throughout: number of transactions processed in the system per second
- Confirmation latency: amount of time required for a transaction to be confirmed and deemed trustworthy

 Ledger of transaction blocks maintained by a network of nodes

	Transaction throughput	Confirmation Latency
Bitcoin		
Ethereum		

 Ledger of transaction blocks maintained by a network of nodes

	Transaction throughput	Confirmation Latency
Bitcoin	5-7 transactions/s	
Ethereum		

 Ledger of transaction blocks maintained by a network of nodes

	Transaction throughput	Confirmation Latency
Bitcoin	5-7 transactions/s	hours
Ethereum		

 Ledger of transaction blocks maintained by a network of nodes

	Transaction throughput	Confirmation Latency
Bitcoin	5-7 transactions/s	hours
Ethereum	30 transactions/s	tens of minutes

 Ledger of transaction blocks maintained by a network of nodes

	Transaction throughput	Confirmation Latency	
Bitcoin	5-7 transactions/s	hours	
Ethereum	30 transactions/s	tens of minutes	
		[]	Li '2(

Contrast: Visa processes more than 10,000 transactions/s³

³https://usa.visa.com

Side Blockchain:

Side Blockchain:

Smaller blockchain systems

Side Blockchain nodes:

Side Blockchain nodes:

 Push hash commitment of their block to the trusted blockchain

Side Blockchain nodes:

- Push hash commitment of their block to the trusted blockchain
- Order of transactions same as hash order in trusted blockchain

Side Blockchain nodes:

- Push hash commitment of their block to the trusted blockchain
- Order of transactions same as hash order in trusted blockchain

Trusted Blockchain:

Side Blockchain nodes:

- Push hash commitment of their block to the trusted blockchain
- Order of transactions same as hash order in trusted blockchain

Trusted Blockchain:

 Only store the hash of the side blockchain

Side Blockchain nodes:

- Push hash commitment of their block to the trusted blockchain
- Order of transactions same as hash order in trusted blockchain

Trusted Blockchain:

- Only store the hash of the side blockchain
- Side blockchains make commitments in parallel

Side Blockchain nodes:

- Push hash commitment of their block to the trusted blockchain
- Order of transactions same as hash order in trusted blockchain

Trusted Blockchain:

- Only store the hash of the side blockchain
- Side blockchains make commitments in parallel
- Leads to higher transaction throughput

Side Blockchain nodes:

- Push hash commitment of their block to the trusted blockchain
- Order of transactions same as hash order in trusted blockchain

Trusted Blockchain:

- Only store the hash of the side blockchain
- Side blockchains make commitments in parallel
- Leads to higher transaction throughput

Issue: Side Blockchains with a majority of dishonest nodes are vulnerable to data availability attacks [Sheng '20]

Adversary creates an invalid block

Adversarial Side Blockchain node:

Pushes hash commitment to the trusted blockchain

Adversarial Side Blockchain node:

- Pushes hash commitment to the trusted blockchain
- Full block not available to other side blockchain nodes

Adversarial Side Blockchain node:

- Pushes hash commitment to the trusted blockchain
- Full block not available to other side blockchain nodes
- The invalid block becomes part of the transaction ordering in the trusted blockchain

Adversarial Side Blockchain node:

- Pushes hash commitment to the trusted blockchain
- Full block not available to other side blockchain nodes
- The invalid block becomes part of the transaction ordering in the trusted blockchain

An oracle layer was introduced to ensure data availability [Sheng '20]

An oracle layer was introduced to ensure data availability [Sheng '20]

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

Trusted Blockchain Data Availability Oracle Side Blockchain

Mitra, Tauz, Dolecek (UCLA)

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

Trusted Blockchain

Accept a Tx block

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain

Oracle layer goal

- Accept a Tx block
- Collectively and efficiently store chunks of the Tx block (to guarantee availability)

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

- Accept a Tx block
- Collectively and efficiently store chunks of the Tx block (to guarantee availability)
- Push the Tx block's hash commitment iff the block is available

An oracle layer was introduced to ensure data availability [Sheng '20]

Oracle layer goal

- Accept a Tx block
- Collectively and efficiently store chunks of the Tx block (to guarantee availability)
- Push the Tx block's hash commitment iff the block is available
- Oracle nodes can be malicious (honest majority)

An oracle layer was introduced to ensure data availability [Sheng '20]

An oracle layer was introduced to ensure data availability [Sheng '20]

- Transaction block: chunked and coded
- Coded chunks dispersed among N oracle nodes

Trusted Blockchain

An oracle layer was introduced to ensure data availability [Sheng '20]

- Transaction block: chunked and coded
- Coded chunks dispersed among N oracle nodes

Trusted Blockchain

For MDS codes, iff at least L coded chunks are present among honest oracle layer nodes \rightarrow block availability is guaranteed

An oracle layer was introduced to ensure data availability [Sheng '20]

Trusted Blockchain Chunk Dispersal LDPC Codes Tx block (D) Side Blockchain

Low-Density Parity Check (LDPC) codes are used to code the Tx block

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

Linear decoding complexity using a peeling decoder

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

- Adversary sends incorrectly coded block to oracle nodes
- Incorrect coding proof size:

 $\mathcal{O}(\text{sparsity of parity check equations})$

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

- Adversary sends incorrectly coded block to oracle nodes
- Incorrect coding proof size:

 $\mathcal{O}(\text{sparsity of parity check equations})$

• LDPC code have small incorrect coding proof size due to sparse parity check matrix

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

Issues with LDPC codes: small stopping sets

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

Issues with LDPC codes: small stopping sets

 If VNs corresponding to a small stopping set are hidden from the oracle nodes, original block cannot be decoded back by a peeling decoder

An oracle layer was introduced to ensure data availability [Sheng '20]

Low-Density Parity Check (LDPC) codes are used to code the Tx block

- Linear decoding complexity using a peeling decoder
- Good performance under incorrect coding attacks

Issues with LDPC codes: small stopping sets

- If VNs corresponding to a small stopping set are hidden from the oracle nodes, original block cannot be decoded back by a peeling decoder
- In [Sheng '20] randomly constructed LDPC codes were used which provides a guarantee on the minimum stopping set size w.h.p

An oracle layer was introduced to ensure data availability [Sheng '20]

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol

Rule about which oracle node stores which coded chunks

Trusted Blockchain

An oracle layer was introduced to ensure data availability [Sheng '20]

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive

An oracle layer was introduced to ensure data availability [Sheng '20]

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- M_{min} := minimum stopping set size of the LDPC code of block length M

An oracle layer was introduced to ensure data availability [Sheng '20]

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- M_{min} := minimum stopping set size of the LDPC code of block length M
- Every γ fraction of nodes should receive at least $M M_{\min} + 1$ coded chunks

An oracle layer was introduced to ensure data availability [Sheng '20]

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- $\blacktriangleright \ M_{\min} :=$ minimum stopping set size of the LDPC code of block length M
 - Every γ fraction of nodes should receive at least $M-M_{\rm min}+1$ coded chunks
- $\beta :=$ fraction of malicious oracle nodes

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- M_{min} := minimum stopping set size of the LDPC code of block length M
 - Every γ fraction of nodes should receive at least $M-M_{\min}+1$ coded chunks
- $\beta :=$ fraction of malicious oracle nodes

If more than $\gamma+\beta$ fraction of nodes vote that the block is available,

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- M_{min} := minimum stopping set size of the LDPC code of block length M
 - Every γ fraction of nodes should receive at least $M-M_{\min}+1$ coded chunks
- $\beta :=$ fraction of malicious oracle nodes

If more than $\gamma+\beta$ fraction of nodes vote that the block is available, then the hash commitment is pushed.

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- $\blacktriangleright \ M_{\min} :=$ minimum stopping set size of the LDPC code of block length M
 - Every γ fraction of nodes should receive at least $M-M_{\min}+1$ coded chunks
- $\beta :=$ fraction of malicious oracle nodes

If more than $\gamma+\beta$ fraction of nodes vote that the block is available, then the hash commitment is pushed.

The oracle guarantees block availability

An oracle layer was introduced to ensure data availability [Sheng '20]

Dispersal Protocol

- Rule about which oracle node stores which coded chunks
- Specifies k coded symbols that each oracle node should receive
- $\blacktriangleright \ M_{\min} :=$ minimum stopping set size of the LDPC code of block length M
 - Every γ fraction of nodes should receive at least $M-M_{\rm min}+1$ coded chunks
- $\beta :=$ fraction of malicious oracle nodes

If more than $\gamma+\beta$ fraction of nodes vote that the block is available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and dispersal

Communication cost:

 Communication cost: amount of data communicated to oracle nodes during dispersal

 Communication cost: amount of data communicated to oracle nodes during dispersal

Dispersal protocol in prior work [Sheng '20]:

 Communication cost: amount of data communicated to oracle nodes during dispersal

Dispersal protocol in prior work [Sheng '20]:

• Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks

 Communication cost: amount of data communicated to oracle nodes during dispersal

Dispersal protocol in prior work [Sheng '20]:

- Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks
 - designed randomly (sampling with replacement)

 Communication cost: amount of data communicated to oracle nodes during dispersal

Dispersal protocol in prior work [Sheng '20]:

- Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks
 - designed randomly (sampling with replacement)
 - M_{min} ↓ ⇒ send more chunks to oracle nodes
 ⇒ communication cost ↑

 Communication cost: amount of data communicated to oracle nodes during dispersal

Dispersal protocol in prior work [Sheng '20]:

- Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks
 - designed randomly (sampling with replacement)
 - $M_{\min} \downarrow \implies$ send more chunks to oracle nodes \implies communication cost \uparrow

Simply design LDPC codes with large minimum stopping set size M_{\min} ?

 Communication cost: amount of data communicated to oracle nodes during dispersal

Dispersal protocol in prior work [Sheng '20]:

- Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks
 - designed randomly (sampling with replacement)
 - M_{min} ↓ ⇒ send more chunks to oracle nodes
 ⇒ communication cost ↑

Simply design LDPC codes with large minimum stopping set size M_{min} ? \rightarrow known hard problem [Jiao '09], [He '11]

 Communication cost: amount of data communicated to oracle nodes during dispersal
 Affected by the co-design of Dispersal protocol and LDPC code

Dispersal protocol in prior work [Sheng '20]:

- Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks
 - designed randomly (sampling with replacement)
 - M_{min} ↓ ⇒ send more chunks to oracle nodes ⇒ communication cost ↑

Simply design LDPC codes with large minimum stopping set size M_{min} ? \rightarrow known hard problem [Jiao '09], [He '11]

 Communication cost: amount of data communicated to oracle nodes during dispersal
 Affected by the co-design of Dispersal protocol and LDPC code

Dispersal protocol in prior work [Sheng '20]:

- Every γ fraction of oracle nodes receives $\geq M - M_{\min} + 1$ coded chunks
 - designed randomly (sampling with replacement)
 - M_{min} ↓ ⇒ send more chunks to oracle nodes ⇒ communication cost ↑

Our work: Design of specialized LDPC codes and a tailored dispersal protocol to significantly lower the communication cost.

Our dispersal strategy is a two step protocol

Our dispersal strategy is a two step protocol

1. Secure Phase

Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size $<\mu)$ are treated in an unified manner

Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size $< \mu$) are treated in an unified manner

 Coded chunks are dispersed in a communication-efficient way such that the small SS failures cannot occur

Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size $< \mu$) are treated in an unified manner

 Coded chunks are dispersed in a communication-efficient way such that the small SS failures cannot occur

2. Valid Phase
Dispersal Protocol Design

Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size $< \mu$) are treated in an unified manner

 Coded chunks are dispersed in a communication-efficient way such that the small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in [Sheng '20] for larger SSs (size $\geq \mu$)

Dispersal Protocol Design

Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size $< \mu$) are treated in an unified manner

 Coded chunks are dispersed in a communication-efficient way such that the small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in [Sheng '20] for larger SSs (size $\geq \mu$)

Coded chunks are dispersed in a communication-efficient way such that availability is guaranteed under the large SS failures

Dispersal Protocol Design

Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size $< \mu$) are treated in an unified manner

 Coded chunks are dispersed in a communication-efficient way such that the small SS failures cannot occur

Secure Valid Dispersal $< \mu \ge \mu$

2. Valid Phase

A refinement of the dispersal protocol used in [Sheng '20] for larger SSs (size $\geq \mu$)

Coded chunks are dispersed in a communication-efficient way such that availability is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- $\blacktriangleright S \text{ is securely dispersed if } |Neigh(S)| \geq f+1$

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$
- Secure Dispersal S f=2
- If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$
- Secure Dispersal S f=2
- If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S
 - \rightarrow Failure of stopping set S cannot occur

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$

If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

•
$$\mathcal{S} = \mathsf{All} \mathsf{SSs}$$
 of size $< \mu$

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$
- If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

Secure Dispersal	
< µ ====================================	$\geq \mu$
LDPC Code	

• $S = AII SSs of size < \mu$

Secure phase: all SSs in S are securely dispersed

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$
- If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S
 - \rightarrow Failure of stopping set S cannot occur

S = All SSs of size < μ
 Secure phase: all SSs in S are securely dispersed

becare phase. an obs in o are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$
- If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

S = All SSs of size < μ
 Secure phase: all SSs in S are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- $\mathcal{V}:$ set of VNs that cover all SSs in $\mathcal S$

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$

If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

S = All SSs of size < μ
 Secure phase: all SSs in S are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- $\mathcal{V}:$ set of VNs that cover all SSs in $\mathcal S$

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$

If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

S = All SSs of size < μ
 Secure phase: all SSs in S are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- $\mathcal{V}:$ set of VNs that cover all SSs in $\mathcal S$
- Each VN in \mathcal{V} is dispersed to f + 1 nodes

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$

If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

S = All SSs of size < μ
 Secure phase: all SSs in S are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- $\mathcal{V}:$ set of VNs that cover all SSs in $\mathcal S$

- Each VN in $\mathcal V$ is dispersed to f+1 nodes

 \rightarrow ensures all SSs in ${\mathcal S}$ are securely dispersed

- Neigh(S) := set of oracle nodes having at least one coded chunk of stopping set S
- f := maximum number of malicious oracle nodes
- S is securely dispersed if $|Neigh(S)| \ge f + 1$

If a stopping set S is securely dispersed, at least one honest node will have a coded chunk corresponding to S

 \rightarrow Failure of stopping set S cannot occur

S = All SSs of size < μ
 Secure phase: all SSs in S are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- $\mathcal{V}:$ set of VNs that cover all SSs in $\mathcal S$
- \rightarrow found greedily: *Greedy-Set*(S)
- Each VN in \mathcal{V} is dispersed to f+1 nodes
- \rightarrow ensures all SSs in ${\mathcal S}$ are securely dispersed

Consider the following dispersal protocol

Consider the following dispersal protocol

 μ -SS-Valid dispersal

Every γ fraction of oracle nodes receives $\geq M-\mu+1$ coded chunks

Consider the following dispersal protocol

 μ -SS-Valid dispersal

Every γ fraction of oracle nodes receives $\geq M-\mu+1$ coded chunks

Each oracle node receives coded chunks corresponding to a uniformly chosen k-element subset of all the k-element subsets of the M coded chunks

.

Consider the following dispersal protocol

 μ -SS-Valid dispersal

Every γ fraction of oracle nodes receives $\geq M - \mu + 1$ coded chunks

Each oracle node receives coded chunks corresponding to a uniformly chosen k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not
$$\mu$$
-SS-valid) $\leq e^{NH_e(\gamma)}P_f(k,\mu)$

$$P_f(k,\mu) = \sum_{j=0}^{M-\mu} (-1)^{M-\mu-j} {\binom{M}{j}} {\binom{M-j-1}{\mu-1}} \left[\frac{\binom{j}{k}}{\binom{M}{k}}\right]^{\gamma N}$$

4 Coupon Collector's problem with group drawings [Stadje '90]

.

Consider the following dispersal protocol

 μ -SS-Valid dispersal

Every γ fraction of oracle nodes receives $\geq M-\mu+1$ coded chunks

Each oracle node receives coded chunks corresponding to a uniformly chosen k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not
$$\mu$$
-SS-valid) $\leq e^{NH_e(\gamma)}P_f(k,\mu)$
 $P_f(k,\mu) = \sum_{j=0}^{M-\mu} (-1)^{M-\mu-j} {M \choose j} {M-j-1 \choose \mu-1} \left[\frac{{\binom{j}{k}}}{{\binom{M}{k}}}\right]^{\gamma N}$
LDPC Code
+ Dispersal
protocol

↓ Coupon Collector's problem with group drawings [Stadje '90] • $k^*(\mu) := \min k$ such that $e^{NH_e(\gamma)}P_f(k,\mu) \le p_{th}$ (some predefined failure probability)

.

Consider the following dispersal protocol

 μ -SS-Valid dispersal

Every γ fraction of oracle nodes receives $\geq M - \mu + 1$ coded chunks

Each oracle node receives coded chunks corresponding to a uniformly chosen k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not
$$\mu$$
-SS-valid) $\leq e^{NH_e(\gamma)}P_f(k,\mu)$
 $P_f(k,\mu) = \sum_{j=0}^{M-\mu} (-1)^{M-\mu-j} {M \choose j} {M-j-1 \choose \mu-1} \left[\frac{{\binom{j}{k}}}{{\binom{M}{k}}}\right]^{\gamma N}$
LDPC Code
+ Dispersal
protocol

↓ Coupon Collector's problem with group drawings [Stadje '90] • $k^*(\mu) := \min k$ such that $e^{NH_e(\gamma)}P_f(k,\mu) \le p_{th}$ (some predefined failure probability)

Consider the following dispersal protocol

 μ -SS-Valid dispersal

Every γ fraction of oracle nodes receives $\geq M - \mu + 1$ coded chunks

Each oracle node receives coded chunks corresponding to a uniformly chosen k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not
$$\mu$$
-SS-valid) $\leq e^{NH_e(\gamma)}P_f(k,\mu)$
 $P_f(k,\mu) = \sum_{j=0}^{M-\mu} (-1)^{M-\mu-j} \binom{M}{j} \binom{M-j-1}{\mu-1} \left[\frac{\binom{j}{k}}{\binom{M}{k}}\right]^{\gamma N}$
LDPC Code
+ Dispersal
protocol

└→ Coupon Collector's problem with group drawings [Stadje '90]

▶ $k^*(\mu) := \min k$ such that $e^{NH_e(\gamma)}P_f(k,\mu) \le p_{th}$ (some predefined failure probability)

Guarantees availability w.p. $\geq 1 - p_{th}$

Overall Dispersal Strategy and Code Design $k^{\ast}\mbox{-}{\rm secure\ dispersal\ protocol}$

Mitra, Tauz, Dolecek (UCLA)

Overall Dispersal Strategy and Code Design $k^{\ast}\mbox{-}{\rm secure\ dispersal\ protocol}$

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

 $< \mu$ size SSs cannot cause block unavailability

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

Guarantees availability w.p. $\geq 1-p_{th}$ for SSs of size $\geq \mu$

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- Recall: Each VN in $\mathit{Greedy-Set}(\mathcal{S})$ is dispersed to $f+1 \ \mathrm{nodes}$

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

Guarantees availability w.p. $\geq 1-p_{th}$ for SSs of size $\geq \mu$

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to f + 1 nodes
- Communication cost $\propto (f+1)|Greedy-Set(\mathcal{S})|$

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

Guarantees availability w.p. $\geq 1-p_{th}$ for SSs of size $\geq \mu$

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- Recall: Each VN in $\mathit{Greedy-Set}(\mathcal{S})$ is dispersed to f+1 nodes

- Communication cost $\propto (f+1)|Greedy$ -Set(S)|

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

Guarantees availability w.p. $\geq 1-p_{th}$ for SSs of size $\geq \mu$

Code Design Strategy:

Design LDPC codes that have low $|Greedy-Set(\mathcal{S})|$

1. Secure Phase

All SSs of size $<\mu$ are securely dispersed

 $<\mu$ size SSs cannot cause block unavailability

- Recall: Each VN in $\mathit{Greedy-Set}(\mathcal{S})$ is dispersed to f+1 nodes
- Communication cost $\propto (f+1)|Greedy$ -Set(S)|

2. Valid Phase

 $k^*(\mu)$ valid dispersal protocol

Guarantees availability w.p. $\geq 1-p_{th}$ for SSs of size $\geq \mu$

Code Design Strategy:

Design LDPC codes that have low $|\mathit{Greedy-Set}(\mathcal{S})|$

-Modify the PEG algorithm

PEG Algorithm

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

PEG Algorithm

PEG Algorithm

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j

• Select a CN with min degree not connected to v_j

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to v_j
Select a CN with min degree not connected to v_j
Else

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j

Expand Tanner Graph in a BFS fashion If = CNs net connected to ave

- If \exists CNs not connected to v_j
 - Select a CN with min degree not connected to v_j

Else

- Find CNs most distant to v_j
- Select one with minimum degree

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j

Expand Tanner Graph in a BFS fashion $\mathbf{H} \supseteq \mathbf{C} \mathbf{N} \mathbf{a}$ and $\mathbf{c} = \mathbf{C} \mathbf{N} \mathbf{a}$

- If \exists CNs not connected to v_j
 - Select a CN with min degree not connected to v_j

Else

- Find CNs most distant to v_j
- Select one with minimum degree *New cycles created*

All CNs exhausted

 Constructs a Tanner Graph in an edge by edge manner [Xiao '05]

For each VN v_j
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to v_j
Select a CN with min degree not connected to v_j
Else
Find CNs most distant to v_j
Select one with minimum degree New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

SSs are made up of cycles [Tian '03]

- SSs are made up of cycles [Tian '03]
- ► Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

DE-PEG Algorithm For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j • Select a CN with min degree not connected to v_j Else (new cycles created) • Find CNs most distant to v_j • Select CNs with minimum degree

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

DE-PEG Algorithm For each VN v_j Expand Tanner Graph in a BFS fashion If \exists CNs not connected to v_j • Select a CN with min degree not connected to v_j Else (new cycles created) • Find CNs most distant to v_j • Select CNs with minimum degree • Select CNs with minimum longedu So

• Select one with minimum |Greedy- $Set(\mathcal{L})|$

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

Issue: Using \mathcal{L} that contains all cycles of length $\leq g$ does not reduce $|Greedy-Set(\mathcal{S})|$

- SSs are made up of cycles [Tian '03]
- ▶ Want to design LDPC codes with low |Greedy-Set(S)|, S = all SSs of size < µ</p>

▶ Design LDPC codes to reduce $|Greedy-Set(\mathcal{L})|$, $\mathcal{L} = List$ of cycles of length $\leq g$

Solution:

Make \mathcal{L} contain only low Extrinsic Message Degree (EMD) [Tian '04] cycles

System Parameters: N = 9000, $\beta = 0.49$, M = 256, Block size = 1MB, $p_{th} = 10^{-8}$, LDPC code rate $= \frac{1}{2}$, $\gamma = 1 - 2\beta$. All communication costs are in GB.

▶ $|\mathcal{V}| = |Greedy\text{-}Set(\mathcal{S})|$ for M = 256, $\mathcal{S} = \text{all SS of size} < \mu$

		$ \mathcal{V} $
μ	PEG	DE-PEG
17	0	0
18	1	0
19	3	1
20	7	4
21	14	13

System Parameters: N = 9000, $\beta = 0.49$, M = 256, Block size = 1MB, $p_{th} = 10^{-8}$, LDPC code rate $= \frac{1}{2}$, $\gamma = 1 - 2\beta$. All communication costs are in GB.

▶ $|\mathcal{V}| = |Greedy$ -Set(S)| for M = 256, $S = \text{all SS of size} < \mu$

		$ \mathcal{V} $
μ	PEG	DE-PEG
17	0	0
18	1	0
19	3	1
20	7	4
21	14	13

DE-PEG always results in lower |V| compared to PEG

System Parameters: N = 9000, $\beta = 0.49$, M = 256, Block size = 1MB, $p_{th} = 10^{-8}$, LDPC code rate $= \frac{1}{2}$, $\gamma = 1 - 2\beta$. All communication costs are in GB.

- ▶ $|\mathcal{V}| = |Greedy\text{-}Set(\mathcal{S})|$ for M = 256, $\mathcal{S} = \text{all SS of size} < \mu$
- ▶ C^s: communication cost of secure phase of dispersal

	$ \mathcal{V} $		\mathbf{C}^{s}		
μ	PEG	DE-PEG	PEG	DE-PEG	
17	0	0	0	0	
18	1	0	0.037	0	
19	3	1	0.112	0.037	
20	7	4	0.262	0.149	
21	14	13	0.524	0.486	

Secure Phase

DE-PEG always results in lower |V| compared to PEG

- ▶ $|\mathcal{V}| = |Greedy\text{-}Set(\mathcal{S})|$ for M = 256, $\mathcal{S} = \text{all SS of size} < \mu$
- ▶ C^s: communication cost of secure phase of dispersal

	$ \mathcal{V} $		C^{s}		
μ	PEG	DE-PEG	PEG	DE-PEG	
17	0	0	0	0	
18	1	0	0.037	0	
19	3	1	0.112	0.037	
20	7	4	0.262	0.149	
21	14	13	0.524	0.486	

Secure Phase

- DE-PEG always results in lower |V| compared to PEG
- As μ is increased, C^s increases. C^s for DE-PEG < C^s for PEG,

- ▶ $|\mathcal{V}| = |Greedy$ -Set(S)| for M = 256, S =all SS of size $< \mu$
- C^s: communication cost of secure phase of dispersal
- C^{v} : communication cost of valid phase of dispersal (each node gets $k^{*}(\mu)$ chunks)

Secure Phase Valid Phase									
μ	$ \mathcal{V} $		\mathbf{C}^{s}		C^v				
	PEG	DE-PEG	PEG	DE-PEG	Ŭ				
17	0	0	0	0	5.116				
18	1	0	0.037	0	4.887				
19	3	1	0.112	0.037	4.658				
20	7	4	0.262	0.149	4.428				
21	14	13	0.524	0.486	4.276				

- DE-PEG always results in lower |V| compared to PEG
- As μ is increased, C^s increases. C^s for DE-PEG < C^s for PEG,

- ▶ $|\mathcal{V}| = |Greedy$ -Set(S)| for M = 256, S =all SS of size $< \mu$
- C^s: communication cost of secure phase of dispersal
- C^{v} : communication cost of valid phase of dispersal (each node gets $k^{*}(\mu)$ chunks)

	Secure Phase Valid Phase									
	$ \mathcal{V} $		C^{s}		C^v					
μ	PEG	DE-PEG	PEG	DE-PEG	0					
17	0	0	0	0	5.116					
18	1	0	0.037	0	4.887					
19	3	1	0.112	0.037	4.658					
20	7	4	0.262	0.149	4.428					
21	14	13	0.524	0.486	4.276					

- DE-PEG always results in lower |V| compared to PEG
- As μ is increased, C^s increases. C^s for DE-PEG < C^s for PEG, C^v decreases.

System Parameters: N = 9000, $\beta = 0.49$, M = 256, Block size = 1MB, $p_{th} = 10^{-8}$, LDPC code rate $= \frac{1}{2}$, $\gamma = 1 - 2\beta$. All communication costs are in GB.

- \triangleright $|\mathcal{V}| = |Greedy-Set(\mathcal{S})|$ for M = 256, $\mathcal{S} = \text{all SS of size} < \mu$
- ▶ C^s: communication cost of secure phase of dispersal
- C^{v} : communication cost of valid phase of dispersal (each node gets $k^{*}(\mu)$ chunks)
- C^T : total communication cost = $C^v + C^s + \Delta$ (small additional overhead)

Secure Phase Valid Phase

	$ \mathcal{V} $		C^s		CUV	C^T	
	PEG	EG DE-PEG PEG DE-PEG C		PEG	DE-PEG		
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- DE-PEG always results in lower $|\mathcal{V}|$ compared to PEG
- As μ is increased, C^s increases. C^s for DE-PEG $< C^s$ for PEG, C^v decreases.

System Parameters: N = 9000, $\beta = 0.49$, M = 256, Block size = 1MB, $p_{th} = 10^{-8}$, LDPC code rate $= \frac{1}{2}$, $\gamma = 1 - 2\beta$. All communication costs are in GB.

- \triangleright $|\mathcal{V}| = |Greedy-Set(\mathcal{S})|$ for M = 256, $\mathcal{S} = \text{all SS of size} < \mu$
- C^s: communication cost of secure phase of dispersal
- \triangleright C^v: communication cost of valid phase of dispersal (each node gets $k^*(\mu)$ chunks)
- C^T : total communication cost = $C^v + C^s + \Delta$ (small additional overhead)

Secure Phase Valid Phase

	$ \mathcal{V} $		C^s		CUV		C^T
μ	PEG	DE-PEG	PEG	DE-PEG		PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- DE-PEG always results in lower $|\mathcal{V}|$ compared to PEG
- As μ is increased, C^s increases. C^s for DE-PEG < C^s for PEG, C^v decreases.
- C^T is lowest for $\mu = 20$, lower for DE-PEG

	$ \mathcal{V} $		C^{s}		CIV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	C.	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

	$ \mathcal{V} $		\mathbf{C}^{s}		CIV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	C.	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

• M_{\min} for PEG LDPC code is 17.

	$ \mathcal{V} $			C^s			C^T
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)

	$ \mathcal{V} $		C^{s}		CIV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	C-	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)

Baseline $k^*(M_{\min})$ valid dispersal + PEG

	$ \mathcal{V} $		C^{s}		CV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)
- Using k^* -secure dispersal protocol with $\mu = 20$ reduces C^T from baseline:

Baseline $k^*(M_{\min})$ valid dispersal + PEG

	$ \mathcal{V} $		C^{s}		CV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)
- Using k^* -secure dispersal protocol with $\mu = 20$ reduces C^T from baseline: Reduction for PEG: 0.425GB

	$ \mathcal{V} $		C^{s}		CV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)
- Using k*-secure dispersal protocol with μ = 20 reduces C^T from baseline: Reduction for PEG: 0.425GB
 Reduction for DE-PEG: 0.528GB

	$ \mathcal{V} $		C^{s}		CV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)
- Using k*-secure dispersal protocol with μ = 20 reduces C^T from baseline: Reduction for PEG: 0.425GB
 Reduction for DE-PEG: 0.528GB
- Lower bound on C^T for $\mu = 20$ is 4.438GB (assuming $C^s = 0$)

	$ \mathcal{V} $		C^{s}		CV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)

 Using k*-secure dispersal protocol with μ = 20 reduces C^T from baseline: Reduction for PEG: 0.425GB
 Reduction for DE-PEG: 0.528GB

• Lower bound on C^T for $\mu = 20$ is 4.438GB (assuming $C^s = 0$)

 \rightarrow equivalent to designing codes with larger minimum SS size which is hard

	$ \mathcal{V} $		C^{s}		CV.	C^T	
μ	PEG	DE-PEG	PEG	DE-PEG	U	PEG	DE-PEG
17	0	0	0	0	5.116	5.125	5.125
18	1	0	0.037	0	4.887	4.933	4.896
19	3	1	0.112	0.037	4.658	4.779	4.704
20	7	4	0.262	0.149	4.428	4.700	4.587
21	14	13	0.524	0.486	4.276	4.809	4.771

- M_{\min} for PEG LDPC code is 17.
- $\mu = 17$ is considered as the baseline with $k^*(M_{\min})$ valid dispersal protocol (no secure phase)

 Using k*-secure dispersal protocol with μ = 20 reduces C^T from baseline: Reduction for PEG: 0.425GB
 Reduction for DE-PEG: 0.528GB

• Lower bound on C^T for $\mu = 20$ is 4.438GB (assuming $C^s = 0$)

ightarrow equivalent to designing codes with larger minimum SS size which is hard

At N = 15000

▶ Baseline $\xrightarrow{7\%$ reduction} PEG + k^* -secure dispersal protocol with $\mu = 20$

At N = 15000

▶ Baseline $\xrightarrow{7\%$ reduction} PEG + k^* -secure dispersal protocol with $\mu = 20$

At N = 15000

- ▶ Baseline $\xrightarrow{7\%$ reduction} PEG + k^* -secure dispersal protocol with $\mu = 20$
- ► Baseline $\xrightarrow{9.3\%$ reduction $\mu = 20$ DE-PEG + k^* -secure dispersal protocol with $\mu = 20$

- ▶ Baseline $\xrightarrow{7\%$ reduction $PEG + k^*$ -secure dispersal protocol with $\mu = 20$
- ► Baseline $\xrightarrow{9.3\%$ reduction} DE-PEG + k^* -secure dispersal protocol with $\mu = 20$

- ▶ Baseline $\xrightarrow{7\%$ reduction $PEG + k^*$ -secure dispersal protocol with $\mu = 20$
- ▶ Baseline $\xrightarrow{9.3\%$ reduction} DE-PEG + k^* -secure dispersal protocol with $\mu = 20$
- Baseline $\xrightarrow{13\%$ reduction} Lower bound for $\mu = 20$

- ▶ Baseline $\xrightarrow{7\%$ reduction $PEG + k^*$ -secure dispersal protocol with $\mu = 20$
- ▶ Baseline $\xrightarrow{9.3\%$ reduction} DE-PEG + k^* -secure dispersal protocol with $\mu = 20$
- Baseline $\xrightarrow{13\%$ reduction} Lower bound for $\mu = 20$

- ▶ Baseline $\xrightarrow{7\%$ reduction} PEG + k^* -secure dispersal protocol with $\mu = 20$
- ▶ Baseline $\xrightarrow{9.3\%$ reduction} DE-PEG + k^* -secure dispersal protocol with $\mu = 20$
- Baseline $\xrightarrow{13\%$ reduction} Lower bound for $\mu = 20$
- Similar trends hold when C^T is plotted as a function of the adversary fraction β

- Conclusion
 - Off-the-shelf LDPC codes, e.g. those designed for AWGN or BSC channels, may not be optimal for:
 - ${\ensuremath{{\scriptstyle \downarrow}}}$ Adversarial erasures with dispersal protocol

Conclusion

- Off-the-shelf LDPC codes, e.g. those designed for AWGN or BSC channels, may not be optimal for:
 Adversarial erasures with dispersal protocol
- LDPC codes tailor made for these specific channels demonstrate better performance

Conclusion

- Off-the-shelf LDPC codes, e.g. those designed for AWGN or BSC channels, may not be optimal for:
 Adversarial erasures with dispersal protocol
- LDPC codes tailor made for these specific channels demonstrate better performance $\downarrow k^*$ -secure dispersal protocol

Conclusion

- Off-the-shelf LDPC codes, e.g. those designed for AWGN or BSC channels, may not be optimal for:
 Adversarial erasures with dispersal protocol
- LDPC codes tailor made for these specific
 - channels demonstrate better performance

Conclusion

- Off-the-shelf LDPC codes, e.g. those designed for AWGN or BSC channels, may not be optimal for:
 Adversarial erasures with dispersal protocol
- LDPC codes tailor made for these specific
 - channels demonstrate better performance

 - ${\bf \downarrow} \ \mathsf{DE-PEG} \ \mathsf{algorithm}$

Ongoing work

Conclusion

- Off-the-shelf LDPC codes, e.g. those designed for AWGN or BSC channels, may not be optimal for:
 - ${\ensuremath{{\scriptstyle \downarrow}}}$ Adversarial erasures with dispersal protocol
- LDPC codes tailor made for these specific channels demonstrate better performance

 - ${\bf \downarrow} \ \mathsf{DE}\text{-}\mathsf{PEG} \ \mathsf{algorithm}$

Ongoing work

• Considering other code families such as Polar codes for this application.

References

- D. Mitra, L. Tauz, and L. Dolecek, "Communication-Efficient LDPC Code Design for Data Availability Oracle in Side Blockchains," available at https://arxiv.org/abs/2105.06004)
- (Sheng '20) P. Sheng, et al., "ACeD: Scalable Data Availability Oracle" arXiv preprint arXiv:2011.00102, Oct. 2020.
- (Xiao '05) X.Y. Hu, et al., *"Regular and irregular progressive edge-growth tanner graphs,"* IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.
- (Tian '03) T. Tian, et al., *"Construction of irregular LDPC codes with low error floors,"* IEEE International Conference on Communications, May 2003.
- (Li '20) C. Li, et al., "A Decentralized Blockchain with High Throughput and Fast Confirmation," in {USENIX} Annual Technical Conference, 2020.

References

- (Jiao '09) X. Jiao, et al. *"Eliminating small stopping sets in irregular low-density parity-check codes,"* IEEE Communications Letters, vol. 13, no. 6, Jun. 2009.
- (He '11) Y. He, et al. "A survey of error floor of LDPC codes," International ICST Conference on Communications and Networking in China (CHINACOM), Aug. 2011.
- (Tian '04) T. Tian, et al. *"Selective avoidance of cycles in irregular LDPC code construction,"* IEEE Transactions on Communications, vol. 52, no. 8, Aug. 2004.
- (Stadje '90) W. Stadje, "The Collector's Problem with Group Drawings," Advances in Applied Probability, vol. 22, no. 4, JSTOR, 1990.