
Communication-Efficient LDPC Code Design for
Data Availability Oracle in Side Blockchains

Debarnab Mitra, Lev Tauz, and Lara Dolecek

Electrical and Computer Engineering
University of California, Los Angeles

ITW 2021

Mitra, Tauz, Dolecek (UCLA) ITW 2021 1 / 18

Blockchain

I Distributed Ledger

I Decentralized trust platforms
I Application:

• Finance and currency
• Healthcare services
• Supply chain management
• Industrial IoT
• e-voting

Mitra, Tauz, Dolecek (UCLA) ITW 2021 2 / 18

Central Problem: Poor Throughput and Latency

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Metrics:

I Transaction throughout: number of transactions processed in the
system per second

I Confirmation latency: amount of time required for a transaction to be
confirmed and deemed trustworthy

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Metrics:

I Transaction throughout: number of transactions processed in the
system per second

I Confirmation latency: amount of time required for a transaction to be
confirmed and deemed trustworthy

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Transaction throughput Confirmation Latency

Bitcoin

5-7 transactions/s hours

Ethereum

30 transactions/s tens of minutes

[Li ’20]

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Transaction throughput Confirmation Latency

Bitcoin 5-7 transactions/s

hours

Ethereum

30 transactions/s tens of minutes

[Li ’20]

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Transaction throughput Confirmation Latency

Bitcoin 5-7 transactions/s hours
Ethereum

30 transactions/s tens of minutes

[Li ’20]

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Transaction throughput Confirmation Latency

Bitcoin 5-7 transactions/s hours
Ethereum 30 transactions/s tens of minutes

[Li ’20]

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Central Problem: Poor Throughput and Latency

I Ledger of transaction blocks

maintained by a network of

nodes

Transaction throughput Confirmation Latency

Bitcoin 5-7 transactions/s hours
Ethereum 30 transactions/s tens of minutes

[Li ’20]

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]

Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain:

I Smaller blockchain systems

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain:

I Smaller blockchain systems

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]
Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Solution: Running Side Blockchains

Side Blockchain nodes:

I Push hash commitment of their
block to the trusted blockchain

I Order of transactions same as
hash order in trusted blockchain

Trusted Blockchain:

I Only store the hash of the side
blockchain

I Side blockchains make
commitments in parallel

I Leads to higher transaction
throughput

Issue: Side Blockchains with a majority of dishonest nodes are
vulnerable to data availability attacks [Sheng ’20]

Contrast: Visa processes more than 10,000 transactions/s3

3https://usa.visa.com

Mitra, Tauz, Dolecek (UCLA) ITW 2021 3 / 18

Data Availability (DA) Attack in Side Blockchains
Adversary creates an invalid block

Note: DA attack cannot occur when
side blockchains have a majority of
honest nodes → majority vote on
“ is something missing?”

Adversarial Side Blockchain node:
I Pushes hash commitment to the trusted blockchain

I Full block not available to other side blockchain nodes

I The invalid block becomes part of the transaction ordering in the
trusted blockchain

Mitra, Tauz, Dolecek (UCLA) ITW 2021 4 / 18

Data Availability (DA) Attack in Side Blockchains
Adversary creates an invalid block

Note: DA attack cannot occur when
side blockchains have a majority of
honest nodes → majority vote on
“ is something missing?”

Adversarial Side Blockchain node:
I Pushes hash commitment to the trusted blockchain

I Full block not available to other side blockchain nodes

I The invalid block becomes part of the transaction ordering in the
trusted blockchain

Mitra, Tauz, Dolecek (UCLA) ITW 2021 4 / 18

Data Availability (DA) Attack in Side Blockchains
Adversary creates an invalid block

Note: DA attack cannot occur when
side blockchains have a majority of
honest nodes → majority vote on
“ is something missing?”

Adversarial Side Blockchain node:
I Pushes hash commitment to the trusted blockchain

I Full block not available to other side blockchain nodes

I The invalid block becomes part of the transaction ordering in the
trusted blockchain

Mitra, Tauz, Dolecek (UCLA) ITW 2021 4 / 18

Data Availability (DA) Attack in Side Blockchains
Adversary creates an invalid block

Note: DA attack cannot occur when
side blockchains have a majority of
honest nodes → majority vote on
“ is something missing?”

Adversarial Side Blockchain node:
I Pushes hash commitment to the trusted blockchain

I Full block not available to other side blockchain nodes

I The invalid block becomes part of the transaction ordering in the
trusted blockchain

Mitra, Tauz, Dolecek (UCLA) ITW 2021 4 / 18

Data Availability (DA) Attack in Side Blockchains
Adversary creates an invalid block

Note: DA attack cannot occur when
side blockchains have a majority of
honest nodes → majority vote on
“ is something missing?”

Adversarial Side Blockchain node:
I Pushes hash commitment to the trusted blockchain

I Full block not available to other side blockchain nodes

I The invalid block becomes part of the transaction ordering in the
trusted blockchain

Mitra, Tauz, Dolecek (UCLA) ITW 2021 4 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Oracle layer goal

I Accept a Tx block

I Collectively and efficiently store chunks of the Tx block
(to guarantee availability)

I Push the Tx block’s hash commitment iff the block is
available

I Oracle nodes can be malicious (honest majority)

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Oracle layer goal

I Accept a Tx block

I Collectively and efficiently store chunks of the Tx block
(to guarantee availability)

I Push the Tx block’s hash commitment iff the block is
available

I Oracle nodes can be malicious (honest majority)

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Oracle layer goal

I Accept a Tx block

I Collectively and efficiently store chunks of the Tx block
(to guarantee availability)

I Push the Tx block’s hash commitment iff the block is
available

I Oracle nodes can be malicious (honest majority)

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Oracle layer goal

I Accept a Tx block

I Collectively and efficiently store chunks of the Tx block
(to guarantee availability)

I Push the Tx block’s hash commitment iff the block is
available

I Oracle nodes can be malicious (honest majority)

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Oracle layer goal

I Accept a Tx block

I Collectively and efficiently store chunks of the Tx block
(to guarantee availability)

I Push the Tx block’s hash commitment iff the block is
available

I Oracle nodes can be malicious (honest majority)

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

I Transaction block: chunked and coded

I Coded chunks dispersed among N oracle nodes

For MDS codes, iff at least L coded chunks are present
among honest oracle layer nodes → block availability is
guaranteed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

I Transaction block: chunked and coded

I Coded chunks dispersed among N oracle nodes

For MDS codes, iff at least L coded chunks are present
among honest oracle layer nodes → block availability is
guaranteed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

I Transaction block: chunked and coded

I Coded chunks dispersed among N oracle nodes

For MDS codes, iff at least L coded chunks are present
among honest oracle layer nodes → block availability is
guaranteed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

• Adversary sends incorrectly coded block to oracle nodes

• Incorrect coding proof size:
O(sparsity of parity check equations)

• LDPC code have small incorrect coding proof size due
to sparse parity check matrix

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

Issues with LDPC codes: small stopping sets

I If VNs corresponding to a small stopping set are hidden
from the oracle nodes, original block cannot be decoded
back by a peeling decoder

I In [Sheng ’20] randomly constructed LDPC codes were
used which provides a guarantee on the minimum
stopping set size w.h.p

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

Issues with LDPC codes: small stopping sets

I If VNs corresponding to a small stopping set are hidden
from the oracle nodes, original block cannot be decoded
back by a peeling decoder

I In [Sheng ’20] randomly constructed LDPC codes were
used which provides a guarantee on the minimum
stopping set size w.h.p

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Low-Density Parity Check (LDPC) codes are used to code
the Tx block

I Linear decoding complexity using a peeling decoder

I Good performance under incorrect coding attacks

Issues with LDPC codes: small stopping sets

I If VNs corresponding to a small stopping set are hidden
from the oracle nodes, original block cannot be decoded
back by a peeling decoder

I In [Sheng ’20] randomly constructed LDPC codes were
used which provides a guarantee on the minimum
stopping set size w.h.p

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available,

then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Solution using a Data Availability Oracle

An oracle layer was introduced to ensure data availability [Sheng ’20]

Dispersal Protocol

I Rule about which oracle node stores which coded chunks

I Specifies k coded symbols that each oracle node should
receive

I Mmin := minimum stopping set size of the LDPC code
of block length M

I Every γ fraction of nodes should receive at least
M −Mmin + 1 coded chunks

• β := fraction of malicious oracle nodes

If more than γ + β fraction of nodes vote that the block is
available, then the hash commitment is pushed.

The oracle guarantees block availability

Note: Side blockchain nodes perform LDPC encoding and
dispersal

Mitra, Tauz, Dolecek (UCLA) ITW 2021 5 / 18

Design Objective: Minimize Communication Cost

I Communication cost:

amount of data
communicated to oracle nodes during dispersal�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)

• Mmin ↓ =⇒ send more chunks to oracle nodes
=⇒ communication cost ↑

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Simply design LDPC codes with large minimum stopping set size Mmin?

→ known hard problem [Jiao ’09], [He ’11]

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal

�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Simply design LDPC codes with large minimum stopping set size Mmin?

→ known hard problem [Jiao ’09], [He ’11]

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Simply design LDPC codes with large minimum stopping set size Mmin?

→ known hard problem [Jiao ’09], [He ’11]

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Design Objective: Minimize Communication Cost

I Communication cost: amount of data
communicated to oracle nodes during dispersal�

Affected by the co-design of Dispersal protocol
and LDPC code

Dispersal protocol in prior work [Sheng ’20]:

I Every γ fraction of oracle nodes receives
≥ M −Mmin + 1 coded chunks

• designed randomly (sampling with replacement)
• Mmin ↓ =⇒ send more chunks to oracle nodes

=⇒ communication cost ↑

Our work: Design of specialized LDPC codes and a tailored dispersal

protocol to significantly lower the communication cost.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 6 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase

All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < µ) are
treated in an unified manner

I Coded chunks are dispersed in a
communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase

A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase
A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)

I Coded chunks are dispersed in a
communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase
A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Dispersal Protocol Design
Our dispersal strategy is a two step protocol

1. Secure Phase
All small stopping sets (SSs) (size < µ) are
treated in an unified manner
I Coded chunks are dispersed in a

communication-efficient way such that the
small SS failures cannot occur

2. Valid Phase
A refinement of the dispersal protocol used in
[Sheng ’20] for larger SSs (size ≥ µ)
I Coded chunks are dispersed in a

communication-efficient way such that availability
is guaranteed under the large SS failures

Code Design Strategy:

Design LDPC codes that reduce communication cost of the secure phase

Mitra, Tauz, Dolecek (UCLA) ITW 2021 7 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S

→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S

→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S

→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S

→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S

→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

I S = All SSs of size < µ

Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S

→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

V

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S

→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

V

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S

→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes

→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

V

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S

→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Secure Phase

I Neigh(S) := set of oracle nodes having at least
one coded chunk of stopping set S

I f := maximum number of malicious oracle nodes

I S is securely dispersed if |Neigh(S)| ≥ f + 1

I If a stopping set S is securely dispersed, at least one honest node will have
a coded chunk corresponding to S
→ Failure of stopping set S cannot occur

V

I S = All SSs of size < µ
Secure phase: all SSs in S are securely dispersed

< µ size SSs cannot cause block unavailability

- V: set of VNs that cover all SSs in S
→ found greedily: Greedy-Set(S)

- Each VN in V is dispersed to f + 1 nodes
→ ensures all SSs in S are securely dispersed

Mitra, Tauz, Dolecek (UCLA) ITW 2021 8 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth

Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth

Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth

Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth

Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth

Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth

Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Valid Phase
Consider the following dispersal protocol

µ-SS-Valid dispersal
Every γ fraction of oracle nodes receives ≥ M − µ+ 1 coded chunks

I Each oracle node receives coded chunks corresponding to a uniformly chosen

k-element subset of all the k-element subsets of the M coded chunks

Lemma
Prob(dispersal is not µ-SS-valid) ≤ eNHe(γ)Pf (k, µ)

Pf (k, µ) =

M−µ∑
j=0

(−1)M−µ−j

(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

�

Coupon Collector’s problem with group drawings [Stadje ’90]

I k∗(µ) := min k such that eNHe(γ)Pf (k, µ) ≤ pth (some predefined failure

probability)

Guarantees availability w.p. ≥ 1−pth
Mitra, Tauz, Dolecek (UCLA) ITW 2021 9 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm

Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

Overall Dispersal Strategy and Code Design
k∗-secure dispersal protocol

1. Secure Phase

All SSs of size < µ are securely dispersed

< µ size SSs cannot cause block unavailability

- Recall: Each VN in Greedy-Set(S) is dispersed to
f + 1 nodes

- Communication cost ∝ (f + 1)|Greedy-Set(S)|

2. Valid Phase
k∗(µ) valid dispersal protocol

Guarantees availability w.p. ≥ 1 − pth for SSs
of size ≥ µ

Code Design Strategy:

Design LDPC codes that have low |Greedy-Set(S)|

-Modify the PEG algorithm
Mitra, Tauz, Dolecek (UCLA) ITW 2021 10 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion

If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj

• Select a CN with min degree not
connected to vj

Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj

Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else

• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

PEG Algorithm

I Constructs a Tanner Graph in an
edge by edge manner [Xiao ’05]

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else
• Find CNs most distant to vj
• Select one with minimum degree

New cycles created

We modify the CN selection criteria in green to result in a low |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 11 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm

For each VN vj
Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)

• Find CNs most distant to vj

• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm
For each VN vj

Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree

• Select one with minimum |Greedy-Set(L)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm
For each VN vj

Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm
For each VN vj

Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|

Issue: Using L that contains all cycles of length ≤ g does not reduce |Greedy-Set(S)|

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Dispersal-Efficient (DE)-PEG Algorithm
I SSs are made up of cycles [Tian ’03]

I Want to design LDPC codes with low
|Greedy-Set(S)|, S = all SSs of size < µ

I Design LDPC codes to reduce |Greedy-Set(L)|, L = List of cycles of length ≤ g

DE-PEG Algorithm
For each VN vj

Expand Tanner Graph in a BFS fashion
If ∃ CNs not connected to vj
• Select a CN with min degree not

connected to vj
Else (new cycles created)
• Find CNs most distant to vj
• Select CNs with minimum degree
• Select one with minimum |Greedy-Set(L)|

Solution:

Make L contain only low Extrinsic Message Degree (EMD) [Tian ’04] cycles

Mitra, Tauz, Dolecek (UCLA) ITW 2021 12 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased,

Cs increases. Cs for DE-PEG < Cs for PEG

,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased,

Cs increases. Cs for DE-PEG < Cs for PEG

,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased,

Cs increases. Cs for DE-PEG < Cs for PEG

,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase

Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased,

Cs increases. Cs for DE-PEG < Cs for PEG

,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase

Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased, Cs increases. Cs for DE-PEG < Cs for PEG,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased, Cs increases. Cs for DE-PEG < Cs for PEG,

Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased, Cs increases. Cs for DE-PEG < Cs for PEG, Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased, Cs increases. Cs for DE-PEG < Cs for PEG, Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
System Parameters: N = 9000, β = 0.49, M = 256, Block size = 1MB,
pth = 10−8, LDPC code rate = 1

2 , γ = 1− 2β. All communication costs are in GB.

I |V| = |Greedy-Set(S)| for M = 256, S = all SS of size < µ

I Cs: communication cost of secure phase of dispersal

I Cv: communication cost of valid phase of dispersal (each node gets k∗(µ) chunks)

I CT : total communication cost = Cv + Cs + ∆ (small additional overhead)

Secure Phase Valid Phase

µ
|V| Cs

Cv
CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I DE-PEG always results in lower |V| compared to PEG

I As µ is increased, Cs increases. Cs for DE-PEG < Cs for PEG, Cv decreases.

I CT is lowest for µ = 20, lower for DE-PEG

Mitra, Tauz, Dolecek (UCLA) ITW 2021 13 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:

Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:

Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:

Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:

Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:

Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:
Reduction for PEG: 0.425GB

Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:
Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:
Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)

→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:
Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)
→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results: Communication Cost Reduction
µ

|V| Cs

Cv CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG

17 0 0 0 0 5.116 5.125 5.125
18 1 0 0.037 0 4.887 4.933 4.896
19 3 1 0.112 0.037 4.658 4.779 4.704
20 7 4 0.262 0.149 4.428 4.700 4.587
21 14 13 0.524 0.486 4.276 4.809 4.771

I Mmin for PEG LDPC code is 17.

I µ = 17 is considered as the baseline with k∗(Mmin) valid dispersal protocol (no
secure phase)

I Using k∗-secure dispersal protocol with µ = 20 reduces CT from baseline:
Reduction for PEG: 0.425GB
Reduction for DE-PEG: 0.528GB

I Lower bound on CT for µ = 20 is 4.438GB (assuming Cs = 0)
→ equivalent to designing codes with larger minimum SS size which is hard

Mitra, Tauz, Dolecek (UCLA) ITW 2021 14 / 18

Simulation Results

No. of oracle nodes N

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)

At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)
At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Simulation Results

No. of oracle nodes N

↑

C
T

(i
n

G
B

)

Fraction of adversarial oracle nodes β

C
T

(i
n

G
B

)
At N = 15000

I Baseline
7%reduction−−−−−−−→ PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
9.3%reduction−−−−−−−−→ DE-PEG + k∗-secure dispersal protocol with µ = 20

I Baseline
13%reduction−−−−−−−→ Lower bound for µ = 20

I Similar trends hold when CT is plotted as a function of the adversary fraction β

Mitra, Tauz, Dolecek (UCLA) ITW 2021 15 / 18

Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol

• LDPC codes tailor made for these specific
channels demonstrate better performance�

k∗-secure dispersal protocol�

DE-PEG algorithm

I Ongoing work

• Considering other code families such as Polar codes for this application.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 16 / 18

Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol
• LDPC codes tailor made for these specific

channels demonstrate better performance

�

k∗-secure dispersal protocol�

DE-PEG algorithm

I Ongoing work

• Considering other code families such as Polar codes for this application.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 16 / 18

Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol
• LDPC codes tailor made for these specific

channels demonstrate better performance�

k∗-secure dispersal protocol

�

DE-PEG algorithm

I Ongoing work

• Considering other code families such as Polar codes for this application.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 16 / 18

Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol
• LDPC codes tailor made for these specific

channels demonstrate better performance�

k∗-secure dispersal protocol�

DE-PEG algorithm

I Ongoing work

• Considering other code families such as Polar codes for this application.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 16 / 18

Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol
• LDPC codes tailor made for these specific

channels demonstrate better performance�

k∗-secure dispersal protocol�

DE-PEG algorithm

I Ongoing work

• Considering other code families such as Polar codes for this application.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 16 / 18

Conclusion and Ongoing work

I Conclusion
• Off-the-shelf LDPC codes, e.g. those designed for

AWGN or BSC channels, may not be optimal for:�

Adversarial erasures with dispersal protocol
• LDPC codes tailor made for these specific

channels demonstrate better performance�

k∗-secure dispersal protocol�

DE-PEG algorithm

I Ongoing work
• Considering other code families such as Polar codes for this application.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 16 / 18

References

I D. Mitra, L. Tauz, and L. Dolecek, “Communication-Efficient LDPC Code Design
for Data Availability Oracle in Side Blockchains,” available at
https://arxiv.org/abs/2105.06004)

• (Sheng ’20) P. Sheng, et al., “ACeD: Scalable Data Availability Oracle” arXiv
preprint arXiv:2011.00102, Oct. 2020.

• (Xiao ’05) X.Y. Hu, et al., “Regular and irregular progressive edge-growth tanner
graphs,” IEEE Transactions of Information Theory, vol. 51, no. 1, 2005.

• (Tian ’03) T. Tian, et al., “Construction of irregular LDPC codes with low error
floors,” IEEE International Conference on Communications, May 2003.

• (Li ’20) C. Li, et al., “A Decentralized Blockchain with High Throughput and Fast
Confirmation ,” in {USENIX} Annual Technical Conference, 2020.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 17 / 18

References

• (Jiao ’09) X. Jiao, et al. “Eliminating small stopping sets in irregular low-density
parity-check codes,” IEEE Communications Letters, vol. 13, no. 6, Jun. 2009.

• (He ’11) Y. He, et al. “A survey of error floor of LDPC codes,” International ICST
Conference on Communications and Networking in China (CHINACOM), Aug.
2011.

• (Tian ’04) T. Tian, et al. “Selective avoidance of cycles in irregular LDPC code
construction,” IEEE Transactions on Communications, vol. 52, no. 8, Aug. 2004.

• (Stadje ’90) W. Stadje, “The Collector’s Problem with Group Drawings,”
Advances in Applied Probability, vol. 22, no. 4, JSTOR, 1990.

Mitra, Tauz, Dolecek (UCLA) ITW 2021 18 / 18

